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ABSTRACT 

Starch structural and functional properties of 13 winter squash (Cucurbita maxima 

D.) cultivars were investigated at harvest and after 5 or 10 weeks storage at 12°C. Texture 

profile analysis was carried out on winter squash fruit steamed at 6 different cooking times 

from 0 to 20 minutes, and for all three storage times. Buttercup squash cultivars had very 

high proportion of dry matter as starch (50-60%), whereas Halloween squash often 

accumulate no starch. Squash starches were B-type, with long amylopectin branch chain-

lengths, low amylopectin polydispersity, gelatinization temperature of 60-65°C, and narrow 

range of gelatinization temperatures. Starch pastes had high peak and final viscosity, and 

high setback. Hardness of fruit was similar after 10 weeks storage, fracturability increased 

during storage and springiness of squash fruit decreased during storage. Correlations among 

squash starch structural and functional properties, and fruit textural attributes were observed. 

Starch content was positively correlated to fruit hardness and fracturability when raw and 

negatively correlated at long-duration cooking times. Springiness of raw and cooked fruit 

was negatively correlated to starch content. Apparent amylose content correlated negatively 

to hardness and fracturability of squash fruit, but absolute amylose content correlated 

positively to hardness and fracturability. Hardness and fracturability of squash fruit was 

consistently correlated to short (DP < 12) and long (DP >37) amylopectin branch chain-

lengths and negatively correlated to intermediate amylopectin branch chain-lengths (DP 13-

36), regardless of storage time. Starch structural and functional properties, and textural 

attributes all varied among seasons. Ultrasound was transmitted through raw and cooked 

squash fruit as novel method of measuring texture. Ultrasonic velocity (UV) was slower than 

air for raw fruit, and despite softening during cooking, UV increased as squash were 
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steamed. Light microscopy analysis showed fruit with fastest UV had cells engorged with 

gelatinized starch, whereas fruit with slower UV had no starch or other material in their cells. 

Zapallo fruit had dramatic variation in starch accumulation and could be used as model 

system for starch biosynthesis. Apple starches were also studied and were C-type with long 

amylopectin branch chains and low paste breakdown. 
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GENERAL INTRODUCTION 

Introduction 

Starch is debatably the most abundant carbohydrate on Earth. Starch is abundant in 

leaves and stems of green plants, and their associated storage organs such as roots, tubers, 

fruits and seeds. Starch serves as the chemical energy from sunlight energy during 

photosynthesis. Starch is globally the predominant food reserve, providing typically 65 to 

75% of the calories consumed by humans worldwide. Starch is biosynthesized in plastids 

and is also found in amyloplasts, which are plastids specifically for storage of starch in the 

form of semi-crystalline granules. 

Starch is a homopolymer comprised solely of D-Glucose. Starch is divided into three 

structural categories: (1) amylose that is essentially linear comprising of largely a-1—>4 

linkages of D-Glucose monomers, (2) amylopectin that has 95% of its linkages a-1—>4 of D-

Glucose and 5% of linkages are D-Glucose monomers linked a-l-»6, (3) D-Glucose 

polymers with both a-1—>4 and a-1—>6 linkages that have properties in common with both 

amylose and amylopectin and are known as the intermediate material. Amylopectin 

molecules are considered the largest naturally occurring molecules in the world. 

Amylopectin is the predominant polymer of starch, typically comprising 70-85% of total 

starch by weight for nonmutant plants. Mutant plants have been discovered including waxy 

varieties that have starches with very low levels of amylose, and high-amylose varieties, such 

as amylomaize VII which has 40% absolute amylose. 

Starches and their modifications have an enormous number of food and non-food 

industrial uses. Food industrial applications include adhesion, binding, clouding, dusting, 

encapsulation, fat substitute, film-formation, foam strengthening, antistaling, gelling, glazing, 
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moisture retention, stabilizing, texturizing and thickening. Typical modifications of starches 

to improve food applications include hydroxypropylation, acid hydrolysis phosphorylation, 

phosphate ester crosslinking, octenylsuccinylation, acetylation and pregelatinization. 

The most important use of starch in food industry is to alter the rheological properties 

of the food in order to meet the textural sensory attributes demanded by consumers. Starch 

can produce various textural attributes ranging from smooth to grainy and from cohesive to 

gelled. Particle size of starch granules influences graininess texture, but also starch 

dispersibility. Flow properties of starch pastes influence the viscous textural parameters of 

the final food product. Starch gelling agents can provide a range of clarities from dull to 

clear paste depending on botanical source of starch used. 

To further improve the utilization of starches in the food industry, it is important to 

understand how starch structural properties influence starch functional properties that impart 

various textural attributes to the final food product. The objectives of this study are to 

investigate the role of starch structural and functional properties in the texture of raw and 

cooked winter squash, and to determine the starch structural components that influence 

functional properties. I expect this research to greatly advance the knowledge of textural 

attributes of winter squash and also the starch structural and functional properties of squash 

starches, and to contribute to the understanding of the role of starch structure and functional 

properties in the texture of foods. 
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Dissertation Organization 

This dissertation consists of ten papers. The first paper, "Structural and 

Physicochemical Characteristics of Winter Squash (Cucurbita maxima D.) Fruit Starches at 

Harvest" and the tenth paper, "Structural and Functional Properties of Apple (Malus 

domestica Borkh) Fruit Starch" will be submitted to Carbohydrate Polymers for publication. 

The second paper, "Role of Starch Structure in Texture of Squash and Starch Functional 

Properties. I. Structural Properties of Starch Extracted From Winter Squash Fruit (Cucurbita 

maxima D.) at Harvest and After Storage", the third paper, "Role of Starch Structure in 

Texture of Squash and Starch Functional Properties. II. Functional Properties of Starch 

Extracted From Winter Squash Fruit (Cucurbita maxima D.) at Harvest and After Storage", 

the fourth paper, "Role of Starch Structure in Texture of Squash and Starch Functional 

Properties. III. Texture of Raw and Cooked Winter Squash (Cucurbita maxima D.) Fruit at 

Harvest and After Storage", the fifth paper "Role of Starch Structure in Texture of Squash 

and Starch Functional Properties. IV. Correlations Among Starch Structure, Starch 

Functionality and Texture of Winter Squash (Cucurbita maxima D.) From Fruit at Harvest 

and After Storage", and the sixth paper "Role of Starch Structure in Texture of Squash and 

Starch Functional Properties. V. Transmission of Ultrasound and Microscopic Observations 

of Winter Squash (Cucurbita maxima D.) Fruit to Examine Texture and Correlations with 

Starch and Cell Walls", will all be submitted to Journal of Agricultural and Food Chemistry 

for publication as five serial papers. The seventh paper "Seasonal Variation in Winter 

Squash (Cucurbita maxima D.) fruit. I. Variation in Starch Structural and Functional 

Properties" and the eighth paper "Seasonal Variation in Winter Squash (Cucurbita maxima 

D.) Fruit. II. Variation in Texture of Raw and Cooked Fruit" will be submitted to the New 
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Zealand Journal of Crop and Horticultural Science. The ninth paper "Variation in 

Agronomic Traits, Starch Structural Properties, Starch Functional Properties and Textural 

Attributes of Cucurbita maxima D. cv. Zapallo Macre Winter Squash Fruit" will be 

submitted to the Journal of the Science and Food Agriculture. The ten papers are preceded 

by a General Introduction and a Literature Review and followed by a General Conclusion, 

Appendices and Acknowledgements. 
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LITERATURE REVIEW 

STARCH STRUCTURAL PROPERTIES 

Amylopectin structure 

One of the earliest models for starch granules is the trichitic model proposed by 

Meyer (1895, cited by French 1972) but this model did not fit amylopectin behavior well 

because the model assumes regular branched structure with inner chains of about 8 glucose 

units, which becomes space limiting after a few tiers (Fig. 1). Viscosity measurements of 

amylopectin indicated highly asymmetric or highly hydrated molecules and after P-amylase 

hydrolysis, limit dextrins of amylopectin were highly asymmetric indicating amylopectin is 

asymmetric. 

Hydrolysis of amylopectin with a-amylase showed chains varied in length and a 

modified trichitic model was developed (Fig. 1). This model allowed indefinite expansion 

from the reducing end of molecule, with branching occurring as space permits (cited by 

French 1972) and was the basis for the cluster models. 

Staudinger and Husemann (1937) proposed a comb-like model for amylopectin 

structure that consisted of one C-chain and all A-chains, with no B-chains, that was quickly 

dismissed (Fig. 1). Haworth (1939) observed that methylated derivatives of starch gave rise, 

upon hydrolysis, to an end-group of tetramethyl glucose corresponding to a chain-length of 

24-30 a-glucose residues. The glucose unit farthest removed in the chain could not be 

shown to have a reducing group and it was proposed that starch consisted of a large number 

of aggregates with repeating unit of 24-30 glucose residues. Later Haworth established that 

amylopectin had about 30 glucose units in a polymer chain by the same glucosidic link and 
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one glucose unit had a different polymeric link, adjoining to another identical chain, allowing 

amylopectin structure to have A-, B- and C-chains (Fig. 1). 

Meyer et al. (1940) degraded amylopectin with ^-amylase and subsequently cc-l->6 

glucosidase in a stepwise manner and proposed a bush-like structure deducted from 

decreased yield of products on repeated hydrolysis (Fig. 2). 

Meyer structure was redrawn by French (1964) to consist of equal proportion of A-

and B-chains and Whelan modified proposed amylopectin structure further, which consisted 

of only half the B-chains carrying A-chains, and half the B-chains having their nonreducing 

termini inside the molecule and not at surface (Gunja-Smith et al. 1970). One year 

preceding, the first cluster model was proposed by Nikuni (1969) in which amylopectin 

clusters were spaced apart. French (1972) proposed a more compact, racemic cluster 

hypothesis of amylopectin structure (Fig. 2), in which such a pattern could originate if parts 

of amylopectin molecule crystallize during growth, thus sterically blocking off that portion 

from further chain elongation. This molecular pattern would have alternating crystalline and 

amorphous regions, with dimensions of crystalline domain approximately the average outer 

chain-length of amylopectin. 

Gel filtration and enzymatic studies (p-amylase and pullulanase) of lintnerized potato 

starch confirmed and further enhanced the racemic cluster model proposed by French (Robin 

et al. 1974) (Fig. 3). This model is able to account for the linear populations of A and B 

which appear after debranching native starch; the long chains obtained in excluded volume 

after debranching or p-amylase treatment of native starch; the debranching of p-limit dextrins 

during lintnerization; and the formation of acid-resistant populations with chain-length 15-
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25. The cluster model by French (1972) and Robin et al. (1974) was revised again by 

Manners and Matheson (1981) to alter the A:B-chain ratio (Fig. 3). 

The now largely accepted cluster model for amylopectin has been further revised by 

Hizukuri (1986), who used gel permeation chromatography and debranching to develop a 

cluster structure which comprised of A-chains that carry no chains and B-chains that carry A-

or other B-chains (Fig. 3). B-chains were also divided into Bl, which like A-chains, are 

found in a single cluster, whereas, B2, B3 and B4 chains extend into 2, 3 and 4 clusters, 

respectively. Bertoft (1991) proposed an amylopectin structure consisting of unit clusters 

built up of A- and B la-chains interconnected regularly by longer B-chains (Fig. 4). 

Trichitic model 
(1895) 

Modified trichitic 

A A A  A A A  

Staudinger 
(1937) 

Haworth 
(1939) 

Figure 1. Some early proposed amylopectin structures. 



www.manaraa.com

8 

B A ? A I > 

R -7 \ B 
"A 

A B 

Meyer 
(1940) 
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(1969) 
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frfr-Tt 4r,X^B s 
Whelan 
(1970) 

French 
(1972) 

Figure 2 
. Proposed models of amylopectin structure, 1940s to early 
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Hizukuri 
(1986) 

Figure 3. Further advancements in proposed models of amylopectin structure. 
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Bertoft 
(1991) 

Figure 4. Latest modification to proposed amylopectin structure. 

Peat et al. (1956) proposed an amylopectin structure consisted of three types of 

chains, A, B and C. In the type A-chain, only the reducing end glucose unit is involved in a-

1—>6 glucosidic linkage. B-chains are linked at their reducing end to another B- or to a C-

chain while additionally having one or more chains as branches, and C-chains carry only 

reducing group in the molecule. 

Peat et al. (1952, 1956) prepared (3-dextrins of amylopectin and debranched with R-

enzyme yielding A-chain derived products of maltose and maltotriose, and yielding B-chain 

derived products of maltohexaose and higher maltosaccharides. Proportion of A-chains was 

initially calculated at 5.3% (1952), but then later corrected to 12.8% (1956). Calculation of 

A-chain proportion enabled evaluation of three possible amylopectin models proposed by 

Haworth, Staudinger and Meyer (see Fig. 1 and 2). Peat assumed the |3-dextrin had a degree 

of polymerization of 3,000, which would provide a maltose and maltotriose yield of 0.083% 

for Haworth structure and 25% for Staudinger structure. Therefore Peat favored the Meyer 

structure with its multiple and random branching. 
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Increasing acceptance of amylopectin models based on Meyer's, such as proposed by 

Robin et al. (1974), led to investigating the ratio of A- to B-chains. Majority of revisions 

proposed for the fine structure of amylopectin have concentrated on altering the ratio of A- to 

B-chains. Many models have focused on amylopectin structure of waxy starches and been 

extrapolated for nonwaxy amylopectin, but this creates problems as the A:B-chain ratio has 

been demonstrated to differ for waxy and nonwaxy amylopectin (Marshall & Whelan 1974). 

Additionally, initial measurements of A:B-chain ratio were based on comparison of reducing 

power generated when amylopectin (3-limit dextrin is digested with isoamylase and/or 

pullulanase, and then measuring the ratio of maltotriose to maltose, and the ratio of both 

saccharides combined to maltohexaose and higher maltosaccharides. However, there are 

errors with the measurement of reducing power and isoamylase concentration has been 

shown to affect A:B-chain ratio (Manners & Matheson 1981). Errors also arise if the p-limit 

dextrin is not free of maltose (Manners 1989a) or if the amylopectin is high in phosphorus 

(Hizukuri & Maehara 1990). 

A:B-chain ratio has been reported by many researchers for amylopectins from many 

different botanical sources as summarized in Table 1, although it should be considered that 

higher growing temperatures have been shown to result in a slight decrease in the A:B-chain 

ratio for rice (Asaoka et al. 1985). A:B-chain ratio as high as 2.6 has been reported (Marshall 

& Whelan 1974), but Atwell et al. (1980) suggests this was due to experimental errors in the 

measurement of reducing power. Yuan et al. (1993) compared A:B-chain ratios calculated 

from debranched native amylopectins and debranched |3-limit dextrins and found ae wx to be 

in good agreement, but wx and du wx were in poor agreement, with greater than double 

magnitude difference. It is speculated that the higher A:B-chain ratios reported by Hizukuri 
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(1986) compared with other researchers is because of shorter B1 chains present in low-

molecular weight fraction were erroneously considered A-chains. Yuan et al. (1993) 

underestimated the A:B-chain ratio of ae wx maize amylopectin from debranched native 

amylopectin compared to debranched p-limit dextrin, and this may be explained by the 

presence of a population of unusually long A-chains in intermediate molecular weight 

fraction of debranched native amylopectins that were erroneously considered as B-chains. 

Hizukuri & Maehara (1990) classified B-chains into Ba-chains that carry at least one 

A-chain, and Bb-chains that carry no A-chains, but instead bear one or more B-chain(s). 

Longer Ba-chains carried an increased number of A-chains which may imply random 

branching in outermost layers of amylopectin molecules. Average amylopectin branch 

chain-length for starches from various botanical sources is shown in Table 2. 

Starch A:B ratio Starch A:B ratio 
ae maize 1.2°, 1.78 rye 1.8h 

ae wx maize 1 2=o sul maize 1.0g 

du maize 1.3g su2 maize 1.5g 

du wx maize 0.9-2.5" tapioca 1.5e* 
kuzu 0.9e triticale 2.1h 

maize (normal) 1.2-1.3°*°, 1.7' waxy maize 1.0b, 1.3dgl°, 1.1-2.3", 2.6' 
mango 1.2k waxy rice 1.2°, 1.5'j, 2.2= 
potato 0.8e, 1.1e, l.3b, waxy sorghum 1.2", 2.6' 

1.45p 

rice 1.5^ wheat 0.7", 1.3f, 1.5-1.9" 
a = Asaoka etal. (1985), b = Bathgate & Manners (1966), c = Bender etal. (1982), d = Enevoldsen & Juliano (1988), e = Hizukuri (1986), f 
= Hizukuri & Maehara (1990), g = Inouchi etal. (1987), h = Lii & Lineback (1977), i = Marshall & Whelan (1974), j = Umeki & 
Yamamoto (1977), k = Wiirsch & Hood (1981), 1 = Yamada & Taki (1977), m = You etal. (1999), n = Yuan etal. (1993), o = Yun & 
Matheson (1993), p = Zhu & Bertofl (1996), * = Hizukuri reports tapioca A:B ratio to be 0.89 but is later found to be an error and should be 
1.5, as explained by Yuan et al. (1993). 

Table 2. Average amylopectin branch chain-length of starches from various botanical 
sources. 
Starch 
Acha 
Adzuki bean 
Amaranth, waxy 

Average Amylopectin Chain-length (DPn) 
18-21 

25-26* 
21.8^ 
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Table 2. (continued) 
Starch Average Amylopectin Chain-length (DPn) 
Arrowroot 20^ 
Banana 26.4^ 
Barley, commercial 22.122 

Barley, waxy 24.215 

Barley cv. Glacier 26.615 

Barley cv. High amylose Glacier 25.5's 
Barley cv. Hull-less Glacier 24.515 

Barley cv. W.B. Merlin 24.215 

Bracken 223 

Canna 28.922, 447 

Chestnut 231 

Chickpea (garbanzo) 22*, 26.0" 
Chinese taro 23.4^ 
Ebiimo (yam) 203 

Faba bean 219 

Gingko 24.216 

Gladiolus 277 

Iburu 20-2111 

Iris 257 

Koimo (yam) 193 

Kuzu 20.517, 213, 267'8 

Lentil 209 

Lily 23.6'*, 243, 347 

Lotus root 22^, 25.4^, 307 

Maize, normal 193, 221'10, 24.416'22, 287 

Maize, amylomaize V 28.9^ 
Maize, amylomaize VII 30.722, 321,447 

Maize, waxy 20^, 23.5^, 247 

Maize ae wx 29.5^ 
Maize du wx 23.I22 

Millet, cattail 21.522 

Millet, finger 20.7" 
Mungbean 23*, 24.8^ 
Nagaimo (yam) 243, 287 

Navy bean 22* 
Potato, commercial 231'3'18, 2410, 28.612, 29.422, 347, 35® 
Potato, waxy 25.8^ 
Red kidney bean 20*, 22-23" 
Rice, commercial 22^22 
Rice, sweet 21.6^ 
Rice, waxy 18% 18.822,19*, 237, 248 

Rice cv. Akihikari 192 

Rice cv. Cypress 20.5^ 
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Table 2. (continued) 
Starch Average Amylopectin Chain-length (DP„) 
Rice cv. Indica 21", 28? 
Rice cv. IR32 21u 

Rice cv. IR36 211 

Rice cv. IR42 221 

Rice cv. IR48 201 

Rice cv. IR64 201 

Rice cv. Japonica 1910, 257 

Rice cv. Koshihikari 201 

Rice cv. Sasanishiki 191'3 

Sago 221 

Smooth pea 22*, 22-24.2" 
Sweet potato, commercial 21^,21.3-22.4^,26.3^ 29? 
Sweet potato cv. Koganesengan 22' 
Sweet potato cv. Norin 2l \307 

Takenokoimo (yam) 203 

Tamba 2011 

Tapioca 2l \  26 7 *,  27.6^ 
Tara (satoimo) 257 

Tulip 307 

Water chestnut 22% 26.7^ 
Wheat, commercial 19", 223,22.7^, 23.5^, 257 

Wheat, waxy 24.421 

Wheat, ASW 131 

Wheat cv. Centura 24.921 

Wheat cv. Chihoku 201 

Wheat cv. Horoshiri 211 

Wheat cv. Kanto 107 24.221 

Wrinkled pea 34»'" 
Yam 24-26% 25.8^ 

1 = Hizukuri (1993), 2 = Tako & Hizukuri (2000), 3 = Suzuki (1993), 4 = Yoshida et al. (2003), 5 = Wang et al. (2002), 6 = Cheetham & 
Tao (1997), 7 = Hizukuri (1985), 8 = Hizukuri (1986), 9 = Biliaderis et al. (1981), 10 = Hizukuri (1988), 11 = Jideani et al. (1996), 12 = 
McPherson & Jane (1999), 13 = Madhusudhan & Tharanathan (1996), 14 = Ratnayake et al. (2002), 15 = Song & Jane (2000), 16 = Spence 
& Jane (1999), 17 = Suzuki etal. (1981), 18 = Suzuki et al. (1994), 19 = Takeda et al. (1983), 20 = Takeda et al. (1986), 21 = Yoo & Jane 
(2002), 22 = Jane et al. (1999) 

Amylose structure 

Generally amylose is the minor component of starch, and is typically 20-25% of the 

starch fraction. Amylose content of starch from various botanical sources is shown in Table 

3. Exceptions to this are waxy starches which ranged from waxy maize and waxy rice with 

no amylose (Jane et al. 1999) to waxy barley with 9% amylose (Song & Jane 2000). Some 
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starches have also been reported to contain unusually high levels of amylose, such as 70% 

amylose for wrinkled pea (Banks et al. 1974, Colonna & Mercier 1984) and HYLON VII 

maize (Mercier 1973). Recently, a low-amylopectin maize starch was developed with 90% 

amylose (Shi et al. 1998). Proportion of amylose in starch was found to increase during 

development of normal and ae maize kernels, but decrease for double mutant, aelwx (Yun & 

Matheson 1992). Determination of amylose content of starches is an extremely important 

problem since most research bases analysis on iodine affinity (IA) of the whole starch 

(apparent amylose), ignoring contribution to IA by amylopectin fraction (absolute amylose). 

For example, HYLON VII maize starch is reported to have 70% apparent amylose, but after 

IA for amylopectin fraction is subtracted, absolute amylose content is 40% (Jane et al. 1999). 

Amylose was initially found to be a linear molecule because only one reducing and 

nonreducing terminal residue was found (Meyer et al. 1940), and hydrolysis of methylated 

amylose enabled the determination that amylose was linked by a-l->4 glucosidic linkages 

with a number-average degree of polymerization (DPn) of 300-400 (Hassid & McCready 

1943). Potter and Hassid (1948) investigated molecular weight of amylose from five 

different botanical sources and found a range from 100,000 to 210,000. Kerr and Cleveland 

(1952) observed amyloses with a few nonreducing terminals per molecule and concluded that 

amylose had a few branches, with relatively long branches in potato compared to corn and 

tapioca. Further support for branching in amylose came from Kjalberg and Manners (1963), 

and Cura et al. (1995), who showed that the linkages preventing complete amylose 

degradation by P-amylase are a-1—»6 glucosidic. Later amylose from com was found to 

have a a-1—>6 glucosidic branch link every 300 D-glucose residues, whereas in potato 

amylose, a branch link was present every 400 D-glucose residues (Misaki et al. 1967). 
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Using advanced technology of low-angle laser-light scattering , Hizukuri & Takagi 

(1984) determined amylose had considerably larger molecular weight, ranging from 518,000 

to 1,080,000, depending on botanical source, with corresponding DPn of 3,220 to 6,680. 

Rice amylose DPn was found to be shorter than other amyloses (980-1,100), with average 

chain-lengths of 250-370 and (3-amylolysis of 73-84%, indicating slightly branched 

molecules (Takeda et al. 1986). Hizukuri et al. (1989) found similar characteristics for rice 

amylose, but regarded branched amylose as an intermediate, third component of starch. 

Using gel permeation chromatography, maize and rice amylose were separated into three 

subtractions with similar properties for each fraction of both amyloses, including highest 

molecular weight amylose being highly branched (Takeda et al. 1992). The authors 

description of highly branched is misleading since the average chain-length of the side chains 

of high-molecular weight amylose of maize was DPn 275-520 with chains ranging from DPn 

200-2,000, and then reported side chains up to DPn 5,000 using amylose labeled at reducing 

terminal with sodium [3H]borohydride (Takeda et al. 1992a, Takeda et al. 1993). 

Observations such as this create uncertainty as to whether these higher molecular weight 

amyloses should be considered instead as intermediate material or amylopectin. 

It is now known that amylose contains more than 2-3 branches as reported in 1940s, 

with Takeda et al. (1989a) reporting 17-19 chains in an average sago amylose molecule and 

Shibanuma et al. (1994) reporting 13-19 chains for wheat amylose. Fewer chains (< 8) on 

average were reported for kuzu, tapioca and potato starches (Takeda et al. 1994) and just 6 

chains reported for rice (Takeda et al. 1989b) and for three African cereal grains (Jideani et 

al. 1996). (3-amylolysis of maize and rice amylose produced small and large (3-limit dextrins, 

suggesting that branch linkages were located randomly on chains (Takeda et al. 1992). 
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Concurrent hydrolysis of amylose with (3-amylase and pullulanase gave 98-100% conversion 

into maltose, providing further evidence that all branch linkages were a-1—>6 (Takeda et al. 

1984). Combination of all enzymatic hydrolysis studies of amylose have led to the 

consensus that amylose molecules are branched, with various chain-lengths and broad 

distributions of molecular weight, and only a minor proportion is truly linear. Reported 

values for amylose chain-length for starch from various botanical sources is shown in Table 

3. 

Amylose typically exists in the double helix form, with single helices of six glucose 

units per turn only obtainable when in the form of inclusion complex with solvents such as 

dimethyl sulfoxide (French and Zobel 1967), «-butanol (Rundle & Edwards 1943, Helbert & 

Chanzy 1994), in n-pentanol (Helbert & Chanzy 1994) or in dry or hydrated state upon 

removal of organic solvents entrapped in these complexes (Zaslow et al. 1974, Zugenmaier 

& Sarko 1976, Rappenecker & Zugenmaier 1981). 

Molecular modeling based on X-ray diffraction and computed lipophilicity profiles 

revealed double helical A-form amylose to be compact structure with an irregular distribution 

of hydrophilic and hydrophobic regions over the entire outer surface, with the interior of the 

double helix being inaccessible even for small molecules (Immel & Lichtenthaler 2000). 

Amylose also forms single helix complex with iodine (Bluhm & Zugenmaier 1981, Murdoch 

1992), in which the hydrophobic channel of single-helical amylose serves as a well-ordered 

matrix for incorporation and alignment of the iodine-iodide species to form a linear 

polyiodide chain in nearly perfect steric fit and in full complementarity of hydrophobic 

regions of guest and host (Immel & Lichtenthaler 2000). 
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Table 3. Amylose content (% by weight) and number-average degree of polymerization 
(DP„) of starches from various botanical sources. All analysis is based on iodine titiration 
and values in blue denote absolute amylose content were determined, black values denote 
apparent amylose content. 

Starch Amylose (%) DPn 

Acha 18.732 1,04032 

Achira (canna) 23.886 

Adzuki bean 19.54;21.222 1,80022 

Aegilops sp. 20-3467 

Amaranth 3.9-S.79; 7.813 

Amaranth, waxy 3.447 

Arrowroot 25.678 2,84061 

Banana cv. Cavendish 19.583 

Banana cv. Criollo 87.084 

Banana cv. Macho 18.084 

Banana cv. Nandigobe 8.5112 

Banana cv. Valéry 40.782 

Barley, commercial 23.647; 23.7-24.225; 2S-2622'45'46; 1,27545; 1,70022 

27.5^; 29.5^ 
Barley, hull-less, h.amylose 33.9-38.688 

Barley, hull-less, normal 22.5-24.688 

Barley, hull-less, waxy 088 

Barley, waxy 5.6-6.71 

Barley cv GlacierPentlandfd 37.0-40.9111 

Barley cv. Golden Prairie 24.9-28.0111 

Barley cv. Triumph 24.7-27.5111 

Black bean 20.1-22.2115 

Bracken 19.778 

Buckwheat 21-2612; 21-2771 

Canna 22.747 1,38061 

Chestnut 1,69061 

Chickpea (Garbanzo bean) 18.94; 30.4-31,3115; 35.960; 
39^ 

Chinese taro 13.847 

Ebiimo (yam) 14.578 

Enset 297 

Faba bean 19.64 

Ginger 2656 

Gingko 2418 

Green gram 3034 

High-amylose barley 41.525; 44.717 

Iburu 19.632 1,12032 

Jack bean 37.5121 

, i i i  
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Table 3. (continued) 

132. 

Starch Amylose (%) DPn 

Koimo (yam) 16.6 
Kuzu 20.028; 20.878; 21.019 1,54049'61 

Lentil 19.64; 34.1-37.4115 

Lily 25.078; 25-26.820 2,31020'49'61 

Lima bean 32.73 

Lotus root 15.961'78 4,20061 

Maize, Amylomaize V 27.347; 36.161; 5058 

Maize, Amylomaize VII 40.247; 58.661; 7258; 75.5119 64053; 69061 

Maize, normal 17.418; 19-2522'42; 21.055; 21.461; 73053; 800134; 930 
21.6""; 22.4^; 22.547; 23.5- 990^ 
2514'69; 26.763; 2879'118; 2958'131 

Maize, waxy q47,58,88,131. ^42 

Maize cv. A632 26.8114 

Maize cv. A632 du 29.0114 

Maize cv. A632 su2 29.5114 

Maize ae 33131; 46.063 

Maize ae btl 32.463 

Maize ae dul 47131; 57.363 

Maize ae du wx 0131 

Maize ae du su wx 0131 

Maize ae su 28131 

Maize ae su wx 0131 

Maize ae wx 0131 

Maize cv. B73 24.859 

Maize btl 24.963 

Maize bt2 24.763 

Maize dul 30.563; 55131 

Maize du su 70131 

Maize dul sul 34.563 

Maize du su wx 0131 

Maize du wx 0131 

Maize h 28.163 

Maize h sh2 26.463 

Maize h wx 063 

Maize cv. Hz85 25.8114 

Maize cv. Hz85 du 37.0114 

Maize cv. Hz85 su2 43.2114 

Maize cv.Oh43 24.7114 

Maize cv. Oh43 du 35.7114 

Maize cv. Oh43 su2 36.7114 

Maize sh2 30.163 

Maize sh2 btl 27.763 

Maize sh2 wx 063 
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Table 3. (continued) 
Starch Amylose (%) DPn 

Maize su 65131 

Maize sul 31.2*3 

Maize su wx O131 

Maize wx dul Q63 

Mango 3427 

Millet, cattail 15.347 

Millet, foxtail 2235; 14-3164; 15.9-27.170 

Millet, foxtail, waxy o
 

3
 

00
 

K)
 

%
 

Mungbean 19.44; 26.4'^; 30 T7 

Nagaimo (yam) 21.37" 
Navy bean 18.54; 23.8-25"^; 32.1^; 37.87^ 
Oat 22.1-26.624 

Oat cv. Alymer 16.9"' 
Oat cv. Antoine 17.081 

Oat cv. Baton 20.181 

Oat cv. Borrus 20.6^ 
Oat cv. Erbgraf 21.0125 

Oat cv. Erich 22.0'^ 
Oat cv. Ernie 18.781 

Oat cv. Francis 18.481 

Oat cv. Gosline 19.581 

Oat cv. Pendragon 20.5125 

Oat cv. Pitol 20.1125 

Oat cv. Selma 19.7125 

Okenia 26.179 

Oxalis (oca) 18.486 

Pea, green 34.2123 

Pinto bean 29.5-30.1115; 32.2123; 3775 

Potato, commercial 16.947; 18.3"; 19.3^; 19.87"; 2190135; 3,000134; 
20#; 20.528; 29.4-29.787; 25.2- 4,450"; 4,900' 
31.2106; 46.4119 4,92049'61 

Potato cv. Mainechip 22.775 

Quinoa 7.122; 11.213 90022 

Red kidney bean 20.04;2785 108085 

Rice, commercial 7-1143; 17-18.330; 20.0-2l.l38'80; 920-l,20030'38'50'52'53 

20.547; 29" 
Rice, high amylose 35.295 

Rice, sweet 2.147 

Rice, waxy O47; 0.095; 0.3103; 0.962 

Rice cv. Akihikari 20.766 

Rice cv. Arbor red 23.790; 24.391 

Rice cv. Aya 13.892; 17.657 

Rice cv. Basmati 370 23.977; 25.454,89 
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Table 3. (continued) 
Starch Amylose (%) DP„ 
Rice cv. Cairo se 14.5100; 16.7™ 
Rice cv. Changlei 17.6*; 19.277,91; 19.4*; 19.7** 

730105; 86073 Rice cv. Chucheongbyeo 20.873,105 730105; 86073 

Rice cv. Chukanbohon 6# 
Rice cv. Co32 26.5»'; 26.8"; 28.1** 
Rice cv. Cypress 18.6"*; 20.1103; 21.574 

Rice cv. Dalian 24.895 

Rice cv. Dawn 22.6'°° 
Rice cv. Delia 20.4103; 21.474'100 

Rice cv. Dongfan 27.095 

Rice cv. Doongara 224100 
Rice cv. Habataki 14.492; 19.257 

Rice cv. Hakuchoumochi 0.057 

Rice cv. Himenomochi 0.0124 

Rice cv. Hokkaido 18.0*^ 110050 

Rice cv. Hokuriku 15.4**; 16.993; 27.S92 

Rice cv. Hoshiyutaka 24.168'93; 25.092; 26.457'107 

Rice cv. Huwan 26.2^ 
Rice cv. Indica KSS7 25.9*2 1000132 

Rice cv. Indica TCSIO 11.462 

Rice cv. Intan 25.6»'; 26.0*» 
Rice cv. IR8 7.8»*; 27.67*; 28.1*» 
Rice cv. IR32 18 561,65,78 

0
 

1 1 

Rice cv. IR36 17.0*'#' 92050,61 

Rice cv. IR42 15 561,65 98050'61 

Rice cv. IR48 17.061 93050'61 

Rice cv. IR64 18.361; 21.574'100 1000*'; 102050 

Rice cv. IR72 2^574,100 

Rice cv. Japonica TCI89 14.162 1000132 

Rice cv. Japonica TG9 12.7*2 

Rice cv. Jasmine 15.0103 

Rice cv. Jaya 27.077; 27.789; 28.29'; 29.454 

Rice cv. Jhona 20 28.9*»; 29.9* 
Rice cv. Jingyu 22.7-24.095 

Rice cv. Jiran 14.395 

Rice cv. Kanto 16.393 

Rice cv. Kinuhikari 18.557 

Rice cv. Koshihikari 16.0 7 4 16.3»^'° 7 ;  17.6' 7 ;  
16.7*'# 

Rice cv. Langi I8.O100 

Rice cv. Madhu 28.9*» 
Rice cv. Mars 12.4103; 14.074,100 

Rice cv. Maybelle 20.1103 
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Table 3. (continued) 
Starch Amylose (%) DP„ 
Rice cv. Milky Queen 7.3**; 9.3"" 
Rice cv. Mochiminori 0.5"; 1.8107 

Rice cv. Nampungbyeo 23.5104 1010105 

Rice cv. Namyoungbyeo 18.873'105 93073 

Rice cv. Nipponbare 16.174'100; 16.668; 17.193; 17.392; Rice cv. Nipponbare 
18.2107; 18.5"; 25.6124 

Rice cv. Ochikara 15.292 

Rice cv. Purple puttu 4.290; 5.291 

Rice cv. Rexmont 23 g74,ioo 

Rice cv. Rojolele 26.2"* 
Rice cv. Saikai 21.0" 
Rice cv. Samgangbyeo 19673,i05 900105; 100073 

Rice cv. Sari-queen 17.492 

110050'61 Rice cv. Sasanishiki 17 561'65'78 110050'61 

Rice shr 2.4"" 
Rice cv. Snow Pearl 3.3*" 
Rice cv. Sukunandi 24.3*; 24.5*%"; 24.8"9 

Rice cv. Taichung 0.974 

Rice cv. TaichungNl T(N)1 24.9'°°; 27.S77; 28.2*'*'; 28.47*; 
28.6"*; 28.8»°; 30.7'°" 

Rice cv. Taim 24.374,100 

Rice cv. Tainung 18.5'°" 
Rice cv. Tamjinbyeo 20.473'105 740105; 80073 

Rice cv. Tomohikari 20.9»^ 
Rice cv. Tongjinbyeo 2io73J°5 750105; 79073 

Rice cv. Toro 14.7103; 15.3'°° 
Rice cv. Whachungbyeo 22.0104 

Rice cv Whachungchalbyeo 3.3'°* 
Rice cv. Whachung dul 6.3104 

97073; 1000105 Rice cv. Yongjubyeo 19.573'105 97073; 1000105 

Rice cv. Yumetoiro 26.2*"; 27.1»3; 29.2'°7 

Sago 24-311'36; 24.3*'; 24.4** 2,490^'*'; 4,490*' 
Smooth pea 18.84; 33.229; 30.0-35.8115; 30-

435; 44.5-48.8*° 
1350133 

Sorghum 18.6-22.597; 19.2-28.8'°* 
Squash, winter (pumpkin) 18-2126 

Sweet potato 16.2-17.310'21; 14.2-24.37'; 4,10049*'; 3,400-
18.278; 20.5-25.5*'"; 27.6'* 4,40021 

Sweet potato cv. Adams 3 27.1101 

Sweet potato cv. Bataan 17.8'°' 
Sweetpotato cv. Beauregard 24.494 

Sweet potato cv. Binicol 15.3'°' 
Sweet potato cv. Chiba 21.5128 
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Table 3. (continued) 
Starch Amylose (%) DPn 

Sweet potato cv. Gunmi 
Sweet potato cv. Jewel 
Sweet potato cv. Junmi 
Sweetpotato Koganesengan 
Swet potato cv. Kagoshima 
Sweetpotato Minamiyutaka 
Sweet potato cv. Norin 
Sweetpotato cv Tamayutaka 
Sweetpotato cv Très colores 
Takenokoimo (yam) 
Tamba 
Tapioca 

Taro 
Tef 
Waterchestnut 
Waxy amaranth 
Waxy barley 
Waxy potato 
Wheat, commercial 

Wheat, durum 
Wheat, waxy 
Wheat cv. Centura 
Wheat cv. Chikugoizumi 
Wheat cv. Condor 
Wheat cv. Fillmore 
Wheat cv. Freedom 
Wheat cv. Geneva 
Wheat cv. Insignia 
Wheat cv. Kanto 107 
Wheat cv. Meeting 
Wheat cv. Nishihonami 
Wheat cv. Norin 
Wheat cv. Pioneer 2550/5 
Wheat cv. Ro sella 
Wheat cv. Sakai 
Wheat cv. Westeem white 
White carrot 
Wrinkled pea 
Yam 
Yam bean 

25.0 
23.0 
25.0 

126 

94 

126 

4100 ,21 

22.0'* 
17.221; 25127 

127 

101 

78 

32 

->78. ,47. ,28. 

22 
23.6 
15.1 
19.8 
14.97*; 17.2^; 17.8^'; 20.(T; 
25. l'2*; 282; 37^ 
7-1041 

27.2-28.8118 

16.047; 2337; 23.3* 
3.4 47 

045; 4.2-5.8/3; 9.1 
011 

12.680; 18.3-2044; 19.155; 20.528; 
21.6*''^; 22-27^^; 23.2'"; 
25.07"; 25.847; 26.6"°; 29.9'2» 

>25. 17 

26.2-28.5 
i 130. 

23 

,117. 0.1""; 0.7 ; 0.8-0.9' 
26.6"° 
21.6110 

33.3 

,44 

72 

102 

102 

102 

72 

130 

99 

110 

,110 

20.9 
23.0 
22.3 
28.8 
26.2 
29.9 
21.6 
25.8""; 27.8 
22.3 

117 

102 
ï99 27.9"; 30.2 

23.3 

,72 

110 

•>86 4.0 
19.8"; 70.9""; 71-82' 
17.7" 
11.6-23.7'" 

4400 
3400 

1,420 ,32 

2,66049'61'131; 3 000134 

48,61 800 

800"4; 1,03053; 830-
1,57033; 1180*'; 
1300132 

1570' 61 

1050 
2000 

133 

,61 
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Table 3. (continued) 
Starch Amylose (%) DP„ 
Yucca 

1 = Ahmad et al. (1999), 2 = Atichokudomchai et al. (2001), 3 = Betancur et al. (2001), 4 = Biliaderis et al. (1981), 5 = Davydova et al. 
(1995), 6 = Garcia & Walter (1998), 7 = Gebre-Mariam & Schmidt (1996), 8 = Hoover et al. (1996), 9 = Hoover et al. (1998), 10 = 
Katayama et al. (2002), 11= McPherson & Jane (1999), 12 = Qian & Kuhn (1999a), 13 = Qian & Kuhn (1999b), 14 = Sahai & Jackson 
(1996), 15 = Schulman et al. (1995), 16 = Shin & Ahn (1983), 17 = Song & Jane (2000), 18 = Spence & Jane (1999), 19 = Suzuki et al. 
(1981), 20 = Takeda et al. (1983), 21 = Takeda et al. (1986), 22 = Tang et al. (2002), 23 = Vansteelandt & Delcour (1999), 24 = Wang & 
White (1994a), 25 = You & Izydorczyk (2002), 26 = Sugimoto et al. (1998a), 27 = Wiirsch & Hood (1981), 28 = Takeda et al. (1984), 29 = 
Colonna & Mercier (1984), 30 = Takeda et al. (1989a), 31 = Yun & Matheson (1992), 32 = Jideani et al. (1996), 33 = Shibanuma et al. 
(1994), 34 = Madhusudhan et al. (1996a), 35 = Madhusudhan et al. (1996b), 36 = Takeda et al. (1989b), 37 = Hizukuri et al. (1988), 38 = 
Takeda & Hizukuri (1986), 39 = Banks et al. (1974), 40 = Kalistratova et al. (1999), 41 = Kinjo & Fukuba (1978), 42= Matveev et al. 
(2001), 43 = Ramesh et al. (1999c), 44 = Sasaki et al. (2000), 45 = Yoshimoto et al. (2002), 46 = Yuryev et al. (1998), 47 = Jane et al. 
(1999), 48 = Hizukuri et al. (1988), 49 = Hizukuri & Takagi (1984), 50 = Hizukuri et al. (1989), 51 = Takeda et al. (1989c), 52 = Takeda et 
al. (1993), 53 = Takeda et al. (1992), 54 = Ramesh et al. (1999b), 55 = Inaba et al. (1994), 56 = Blennow et al. (2001), 57 = Yoshii et al. 
(1997), 58 = Mun et al. (1998), 59 = Yamin et al. (1999), 60 = Czuchajowska et al. (1998), 61 = Hizukuri (1993), 62 = Lin et al. (2001), 63 
= Wang et al. (1993a), 64 = Inouchi et al. (1993), 65 = Takeda et al. (1987), 66 = Tako & Hizukuri (2000), 67 = Stoddard & Sarker (2000), 
68 = Kuno et al. (2000), 69 = Hamanishi et al. (2000), 70 = Fujita et al. (1996), 71 = Noda et al. (1998), 72 = Wootton et al. (1998), 73 = 
Kang et al. (1995), 74 = Meullenet et al. (2000), 75 = Kim et al. (1996), 76 = Bhattacharya et al. (1972), 77 = Sowbhagya & Bhattacharya 
(2001), 78 = Suzuki (1993), 79 = Gonzâlez-Reyes et al. (2003), 80 = Aarathi et al. (2003), 81 = Hoover et al. (2003), 82 = Waliszewski et 
al. (2003), 83 = Ling et al. (1982) 84, Bello-Pérez et al. (1999), 85 = Yoshida et al. (2003), 86 = Santacruz et al. (2003), 87 = Liu et al. 
(2003), 88 = Li et al. (2001a), 89 = Reddy et al. (1994), 90 = Sandhya Rani & Bhattacharya (1989a), 91 = Sowbhagya et al. (1991), 92 = 
Takahashi et al. (1998), 93 = Takahashi et al. (2000), 94 = Walter et al. (2000), 95 = Yao et al. (2002), 96 = Sodhi & Singh (2003), 97 = 
Aboubacar & Hamaker (2000), 98 = Akashi et al. (1999), 99 = Black et al. (2000), 100 = Champagne et al. (1999), 101 = Collado & Corke 
(1997), 102 = Gaines et al. (2000), 103 = Kadan et al. (1997), 104 = Kang & Han (2001), 105 = Kang et al. (1994), 106 = Kaur et al. 
(2002), 107 = Kohyama et al. (1998), 108 = Lai (2001), 109 = Lee et al. (2001), 110 = Noda et al. (2001), 111= Kiseleva et al. (2003), 112 
= Lehmann et al. (2002), 113= Forsyth et al. (2002), 114 = Li & Corke (1999), 115 = Hoover & Ratnayake (2002), 116 = Wang et al. 
(2002), 117 = Sasaki et al. (2002), 118 = Bultosa et al. (2002), 119 = Jiang & Liu (2002), 120 = Swinkels (1985b), 121 = Betancur & Chel 
(1997), 122= Gâlvez & Resurrection (1993), 123 = Gujska et al. (1994), 124 = Singh et al. (2000), 125 = Tester & Karkalas (1996), 126 = 
Seog et al. (1987), 127 = Shiotahi et al. (1991), 128 = Kitada et al. (1988), 129 = Del Rosario & Pontiveros (1983), 130 = Yoo & Jane 
(2002), 131 = Yeh et al. (1981), 132 = Hizukuri (1988), 133 = Ratnayake et al. (2002), 134 = Swinkels (1985a), 135= Suzuki et al. (1994) 

Intermediate Material 

Separation of starch components using solvent complexes revealed a fraction with 

structural properties that could not be easily classified as amylose or amylopectin. Typically 

this unknown fraction was included with amylose, inflating its true content. This new starch 

fraction became known as the intermediate starch material and was first investigated in detail 

by Wolff et al. (1955), who discovered its presence in amylomaize, and confirmed 

speculation of its presence by other researchers (Kerr & Trubell 1943, Schoch 1945, Whistler 

& Hilbert 1945, Hodge et al. 1948, Lansky et al. 1949). 

Whistler & Doane (1961) reported intermediate fraction to consist 4.5-8.7% of total 

starch. This fraction gave a deep-blue color with iodine, but lower blue values than for 

amylose, and had a maximum absorbance between values for amylopectin and amylose. 
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Intermediate fraction was less branched with only 64% of the branching frequency of 

amylopectin and higher p-amylolysis limit. 

Explanations for the anomalous properties of intermediate fraction began to be 

proposed. One theory was that high-amylose starches have an imbalance of synthesizing 

enzymes resulting in a structurally homogeneous amylopectin produced with greater than 

normal amylopectin (Wolff et al. 1955, Montgomery et al. 1964, Erlander et al. 1965). 

Another theory is intermediate material is a mixture of normal amylopectin and degraded 

amylose, with the quantity of contaminating amylose unable to complex with w-butanol 

(Greenwood & MacKenzie 1966, Adkins & Greenwood 1966). This theory was later 

amended to have low molecular weight amylose present (Banks & Greenwood 1968). 

Development of gel chromatography packing materials has allowed separation of 

starch components based on molecular size. Yamada and Taki (1976) did not observe any 

intermediate material in maize starches fractionated using agarose gel but they dissolved 

starch in chilled perchloric acid which may have been too severe. High-amylose maize 

starches, fractionated using Sephadex, were shown to contain higher proportions of 

intermediate material than normal maize starches (Ikawa et al. 1978, Yeh et al. 1981). 

Colonna & Mercier (1984), using Sephacryl S-200, reported 18.9% of wrinkled pea starch 

was intermediate material that had low molecular weight and intrinsic viscosity, with high 

polydispersity. Isoamylase debranching gave products with average chain-length of 29, with 

two distinct chain populations after separation, with DP values of 15 and 45. Rice starches 

were shown to contain 3-11% intermediate fraction (Yano et al. 1985, Asaoka et al. 1986). 

Intermediate fraction was reported to be < 1.6% of total starch for normal maize and all other 

maize mutants except amylose extender (Inouchi et al. 1987). 
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Baba et al. (1987) reported the occurrence of abnormal amylopectin and intermediate 

material in amylomaize. Abnormal amylopectin possessed less highly branched structure 

with long inner and outer branches, whereas intermediate material has lower molecular 

weight than normal amylose and high iodine binding capacity despite low Xmax for iodine 

staining. Amylomaize VII was found to contain 55% intermediate material, contributing to 

the apparently high amylose content. 

In the last decade and half, research has continued to characterize intermediate 

material but overall little advances in understanding the synthesis, structure, biological role 

and functionality have been made. Fine structure of intermediate starch material in rice was 

studied by Takeda et al. (1989b), who determined number-average DP of 930-1,200, average 

chain-length of 380-450 and molar ratio of branched to unbranched molecules was 1:2 to 1:3. 

Intermediate material had six branches per molecule on average, similar to that reported for 

amylomaize (Baba & Arai 1984), which may be poorly branched amylose. Low molecular 

weight intermediate material in wrinkled pea starch has been proposed to be built-up of 

cluster units with same principal architecture and sizes similar to high molecular weight 

branched material, but with a different mode of interconnection (Bertoft et al. 1993). In 

recent years, focus has been on intermediate material in mutant maize starches. Intermediate 

material was reported to contribute greatly to iodine affinity measurements in ae maize but 

not for dul, btl and ae dul (Wang et al. 1993b). This result implied maize mutants differed 

in their intermediate material structure and it was later shown that ae intermediate material 

has long B-chains present (Kasemsuwan et al. 1995, Tziotis 2001). 

Starch Granule 
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Starch is laid down in all higher plants in form of biréfringent, semi-crystalline 

granules. At the center of the starch granule is the original growing point, known as the 

hilum, which is usually less organized than the rest of the granule (Blanshard 1987), and 

typically is not the geometric center of the granule. 

The final shape of starch granules is characteristic for different species of plants, and 

an extensive variety in morphology has been reported (Jane et al. 1994) and some of the 

variety in morphology is shown in Fig. 5. Characteristics of starch granules from a range of 

botanical sources are shown in Table 4. Cellular organization of synthetic apparatus is 

considered the primary factor determining final granule topography. However, striving to 

minimize surface free energy may also influence shape. Granular curvature will enable 

closer cluster packing in crystalline layer, reducing specific surface free energy to 

compensate for increased surface-to-volume ratio (Larsson 1991). Shape of pea starch 

granules from lines containing mutations at either r or rug5 loci, encoding a starch branching 

enzyme and a soluble starch synthase, differ significantly from non-mutant granules. These 

mutations also cause changes in granular structure and Maltese cross is no longer observed 

(Hedley et al. 2002). 
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Figure 5. SEM images are starch granules from maize (A) and potato (B), rice (C), wheat 
(D), barley (E), acorn (F) avocado (G), parsnip (H) and shoti (I) (source: Jane et al. 1994). 
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Very little is known about the arrangement of amylose and amylopectin molecules in 

starch granules. Trichitic model (Meyer 1895) was first to show concentric ring-like 

organization of amylopectin molecules (see Fig. 1), but was dismissed due to overcrowding 

of molecules as granules enlarged (French 1972). Nikuni (1969) proposed the unitary theory 

of starch where all molecules in starch granule may be covalently bound. Both amylose and 

amylopectin are incorporated with the appearance of concentric ring structure. However, this 

model was also dismissed because molecular weight obtained by this model greatly exceeded 

that determined by physicochemical methods. Lineback (1984) modified Nikuni model to 

incorporate the concept of a double helix of an outer chain of amylopectin. Amylose existed 

in a random or helical configuration without binding to an amylopectin molecule. Kainuma 

(1980) and French (1984) proposed possible arrangement of amylopectin clusters in waxy 

starch granules based on transmission electron microscopy observations and analyses of 

branching pattern of amylopectin and structure of Nâgeli amylodextrin. In this model, starch 

molecules are aligned perpendicular to the growth ring. Combining data from three-

dimensional tomographic reconstructions and electron diffraction, Oostergetel & van 

Bruggen (1993) proposed a model for semi-crystalline structure and arrangement of 

amylopectin molecules in potato starch. In this model, helices form a continuous, regular 

crystalline network. Linear segments form double helices which are crystallized into 5 nm 

thick lamellae, alternating with amorphous layers in which the a-l-»4, a-l->6 branch points 

are located. Since neighboring helices interpenetrate each other, crystalline lamellae form a 

continuous super helical structure. Recently, computer-simulated models have implied that 

certain internal chain-lengths will impede the formation of parallel structures and thus 
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crystalline amylopectin (O'Sullivan & Perez 1999), supporting earlier findings (Pfannemuller 

1987). 

Granule crystallinity is associated with the amylopectin component (Veregin et al. 

1986). Regions of amylopectin double helix formation fall within the crystalline lamellae, 

whilst the amylopectin branch points lie in both the amorphous and crystalline lamellae, 

depending on whether starch is A- or B-type (Jane et al. 1997). Branch points in amylopectin 

are not randomly distributed along the molecule, but are clustered and the interjacent linear 

segments form thin (~ 5 nm) crystalline lamellae domains (Oostergetel & van Bruggen 

1993). These domains are visible in transmission electron micrographs of starch granule thin 

sections (Kassenbeck 1978) or fragments (Yamaguchi et al. 1979, Oostergetel & van 

Bruggen 1989) and were initially believed to have a regular spacing of ~ 10 nm (Blanshard et 

al. 1984, Oostergetel & van Bruggen 1989), but later was revised to ~ 9 nm (Jenkins et al. 

1993), and a crystalline lamellae diameter of ~ 18 nm (Oostergetel & van Bruggen 1993). 

Crystalline lamellae are present in two main directions with a relative angle of 25° 

(Oostergetel & van Bruggen 1993). Cluster models for amylopectin structure (French 1972, 

Zobel 1988, Manners 1989b) do not explain why crystalline lamellae are seen locally in 

essentially two different orientations. 

Growth rings are often seen in granules, and amylopectin and amylose are arranged 

radially with their molecular axes aligned perpendicular to the growth rings and to the 

granule surface (Kainuma 1988, Waigh et al. 1997). Growth rings are alternating ring 

structures consisting of amorphous and crystalline regions (French 1984). It is postulated 

that crystalline smectic lamellar periodicity (Yamaguchi et al. 1979), which is more 

conducive at longer spacer lengths (Waigh et al. 1998), is due to antagonistic effect of 
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entropy of amylopectin backbone and the ordering of helices (Waigh et al. 1999). Formation 

of distinct rings results from both the apposition of new material on the granule and the 

action of swelling, with largest rings towards outer edge of granule where swelling is 

greatest. Growth rings themselves may be broken into smaller "blocklets" due to creation of 

radial canals on swelling that break up the rings. Blocklets, structures that are visible 

optically (size ~ Ipim) have been reported to be artifacts due to separation of layers during 

preparation of starch for analysis (Badenhuizen 1959). 

Gallant et al. (1997) revived the blocklet concept, describing organization of 

amylopectin lamellae into spherical blocklets, with diameters from 20-500 nm depending on 

botanical origin and location within granule. Scanning electron microscopy studies showed 

wheat starch has small blocklets (~ 25 nm) in the semi-crystalline shells, and larger 80-120 

nm blocklets in the hard crystalline layers (Baker et al. 2001). Potato starch shows much 

larger blocklets of 200-500 nm. Atomic force microscopy revealed wheat starch has small 

surface protrusions of 10-50 nm, whereas larger spherical protrusions (200-500 nm) were 

observed on surface of potato starch granules (Ohtani et al. 2000, Baker et al. 2001). 

Topographic and phase images of ~ 100 nm thick sections showed mostly no indication of 

growth ring structure (Baker et al. 2001), consistent with early electron microscope 

observations of sections through maize endosperm where less than 15% of starch granules 

showed growth rings (Whistler & Thomburg 1957, Badenhuizen 1959). However, Baker et 

al. (2001) did report towards outer region of corn starch granules the presence of growth 

rings spaced by 450 nm, and some slightly finer rings with widths of 100-200 nm (Baker et 

al. 2001). Both ring sizes are well within the normal range of 150-700 nm observed for corn 

starch (Mussulman & Wagoner 1968). 
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The precise structural role played by amylose is unclear. It is likely that a large 

portion is found within amorphous growth ring, with only small amounts associated with 

semi-crystalline growth ring (Montgomery & Senti 1958). It has been suggested that some 

amylose co-crystallizes with amylopectin within crystalline lamella (Blanshard 1987, 

Kasemsuwan & Jane 1994, Gérard et al. 2002). Amylose may also form inclusion 

complexes with any lipids present internally within starch granule (Morrison 1988, Morgan 

et al. 1995). 

Studies of waxy, normal and high-amylose maize starch found all three had combined 

size of crystalline and amorphous lamellae of 9 nm (Jenkins et al. 1993) but the fraction of 

this repeat distance allocated to crystalline lamellae was observed to be strongly influenced 

by the amylose content of starch (Jenkins & Donald 1995). Size of crystalline lamellae 

increased with increasing amylose content for the three maize starches studied. Additionally, 

amylose content has been reported to increase, particularly at the periphery, as granules 

enlarge (Jane & Shen 1993, Takeda et al. 1999, Pan & Jane 2000), and larger starch granules 

have been reported to have greater degree of crystallinity (Franco et al. 1998). A new 

interesting theory has been proposed by Kitahara et al. (2002), who demonstrated, using 

sweet potato callus as a model system, that amylopectin molecular synthesis was completed 

before the appearance of any amylose in starch granules. 

The relationship between amylose content and crystalline lamellae size is at first 

sight, counter-intuitive. Amylopectin is known to be responsible for granular crystallinity, 

yet reducing amylopectin content has the effect of increasing the crystalline region size. 

However, using chromatographic techniques to analyze enzymatic debranched amylopectin, 

average A-chain of maize and waxy maize comprise about 18 glucose units (Hizukuri et al. 
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1983, Hizukuri 1985, Takeda et al. 1988), whilst amylomaize has longer A-chains 

comprising around 20 glucose units (Hizukuri 1985, Takeda, C. et al. 1993). Assuming that 

the two residues nearest the branch point can not participate in double helix formation due to 

steric constraints (Umeki & Kainuma 1981) and using molecular structures derived by 

Imberty et al. (1991), these numbers of glucose units correspond to crystallize amylopectin 

sections of length around 5.7 nm for maize and waxy maize, and 6.2 nm for amylomaize 

(Jenkins & Donald 1995). However, Umeki & Kainuma (1981) used acid to etch away the 

amorphous regions of waxy maize starch granules, and calculated a crystallizing chain-length 

of 5.0 nm. Therefore the difference suggests estimated lengths are an overestimate, or 

etching destroys part of amylopectin chain within crystals. 

As amylose content is increased, the difference between length of crystalline lamellae 

and crystallizing amylopectin A-chain, also increases (Jenkins & Donald 1995). It appears 

amylose is acting to disrupt the packing of amylopectin double helices within the crystalline 

lamellae. Jenkins & Donald (1995), propose two possible mechanisms, one involving 

amylose co-crystallizing with amylopectin, pulling amylopectin chains out of register, and 

other mechanism involves amylose chains oriented transverse to the lamellar stack, 

penetrating the amorphous lamellae and introducing disorder. Additionally, Jenkins & 

Donald (1995) observed electron density decreases as amylose content increased, with the 

change probably associated with a reduction in crystalline lamellae electron density, and/or 

an increase in amorphous lamellae electron density. Improved packing array of amylopectin 

chains would have greater density than a disrupted array. Therefore most of the observed 

change in electron density is probably due to a reduction of crystalline lamellar density with 

increasing amylose content. 
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X-ray diffraction of humidified starch powders gives distinctive patterns for A- and 

B-type starches, as well as amylose-lipid complexes. Amylose-lipid complex changes the 

intensity ratio in the scattering region 20 = 19-23°, and peaks are found at 20 = 7.4°, 13.0° 

and 20.5° (Gernat et al. 1993). 

Two different X-ray diffraction patterns can be obtained for starch according to 

botanical source. A-type is predominantly found in cereals, and B-type predominantly in 

root and tuber starches, although this is only a rough generalization. Using electron 

diffraction of single crystals, X-ray powder patterns and X-ray fiber diffraction, a three-

dimensional structure of crystalline part of A-starch was determined in which the unit cell 

contains 12 glucose residues located in two left-handed, parallel-stranded double helices 

packed in a parallel fashion with four water molecules located between the helices (Imberty 

et al. 1987, Imberty et al. 1988a, Baker et al. 2001). Chains are crystallized in a monoclinic 

lattice. Three-dimensional structure of B-starch was determined to have a unit cell 

containing 12 glucose residues in two left-handed, parallel-stranded double helices packed in 

a parallel register with 36 water molecules located between these helices (Imberty et al. 

1988b, Baker et al. 2001), and was therefore less dense than A-starch (Bogracheva et al. 

1999). Chains are crystallized in a hexagonal space group. For both A- and B-starch, 

primary hydroxyl groups exist in gauche-gauche conformation and no intramolecular 

hydrogen bonding occurs. Within double helix, interstrand stabilization is achieved without 

steric conflict through the occurrence of 0(2).. .0(6) type hydrogen bonds, with two such 

bonds per glucose residue (Imberty et al. 1988a, Imberty et al. 1988b). However hydrogen 

bonding is not the only force stabilizing double helices, as van der Waals interactions still 

contribute majority of the stabilizing. Inner dimension of a double helix cavity is 0.35 nm in 
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diameter which does not allow any water molecules to pack internally (Imberty et al. 1988a). 

For B-starch, hydration is 27% (w/w), in which half the water molecules are tightly bound to 

double helices and remainder form a complex network centered around the six fold screw 

axis of the unit cell (Wu & Sarko 1977, Imberty et al. 1988b). gauche-gauche orientation 

was found to be consistently better than other models in terms of low values of 

crystallographic R factor and energy criteria. For each strand, conformation at the a-l->4 

glycosidic linkage is in a low-energy conformation and the association of two such strands in 

a double-helical fashion exhibits further energy stabilization through interchain hydrogen 

bonding (Imberty et al. 1988b). Transition form B-starch to A-starch can be accomplished 

by rearrangement of the pairs of double helices (Imberty et al. 1991), typically involving 

heat-moisture treatments (Perera et al. 1997, Jacobs & Delcour 1998). Many authors have 

stated that water molecules play an important role in establishing the crystalline organization 

of B-starch. The effect of water acting as a plasticizer, inducing an alignment of starch 

molecules was suggested by French (1984). In contrast, development of an ordered water 

structure has been postulated, in which water molecules are arranged either as systematic 

water bridges (Eisenhaber & Schulz 1992) or every string of six helical macromolecular 

chains encloses a cylindrical cavity filled with water structured like cubic ice (Cleven et al. 

1978). 

Despite the large presence of water in B-type starch, a greater volume of water is 

found in amorphous regions of granules (Jenkins & Donald 1996). Additionally, water 

content within amorphous lamellae and amorphous background is similar for B-type starches, 

but in A-type starches, amorphous lamellae have a lower density and therefore a more open 

structure, which will therefore be more easily penetrated by water, compared to the 
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amorphous background (Donald et al. 2001). One possible explanation for this qualitative 

difference in amorphous region properties is based on environmental growth conditions of 

cereal and tuber starches. A-type cereal starches develop above ground, experiencing 

cyclical light and darkness, whilst potato starch is formed in constant darkness. Cereal 

starches are believed to form one semi-crystalline and one amorphous growth ring in a single 

day, in periods of light and darkness, respectively (Buttrose 1962). However, transmission 

electron microscopy studies have shown that growth rings are still present in potato starch 

granules grown in constant light or darkness. Recently, Tang et al. (2000) attempted to study 

the behavior of water in different regions of starch granules using NMR but interpretations 

are difficult as it is challenging to identify correctly the different populations of protons. 

A third type of starch crystal packing, involving both A- and B-type crystallinity 

present has been observed for some starches. Smooth pea starch is reported to be C-type 

with proportion of A and B polymorphs about 56 and 44%, respectively (Gernat et al. 1990, 

Gemat et al. 1993, Cairns et al. 1997). X-ray diffraction from C-type starch was 

demonstrated to be similar to diffraction pattern constructed by combining diffraction 

patterns from crystalline portions of A- and B-type starches (Cairns et al. 1997). 

Hydrolysis, involving a- and ^-amylase, of two double maize mutant starches of A-

crystalline (wxdu) and B-crystalline type (aewx) isolated clusters and all branching zones of 

clusters (BZC). Size exclusion chromatography combined with enzymatic analysis revealed 

that A-type clusters were larger (DPn > 80) and contained more, but shorter, chains than B-

type clusters (Gerard et al. 2000). BZC of A-type starch were also larger, but with shorter 

distance between the branching points than in B-type BZC. A-type clusters had a densely 

packed structure and B-type had a poorly branched structure. Gerard et al. (2000) also found 
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distance between two a-l->6 linkages and the branching density inside each cluster are 

determining factors for development of crystallinity in starch granules. Clusters composed of 

numerous short chains and characterized by a short distance between successive chains 

within the amylopectin molecule produce densely packed structures, and appear to crystallize 

into A allomorphic type. Conversely, clusters composed with fewer but longer chains and 

BZC with a long distance between branching points produce a poorly packed structure and 

subsequently crystallize into B allomorphic type. 

Some starch granules of corn, sorghum and millet have been reported to have small 

pores randomly distributed over their surfaces and wheat, rye and barley starches have pores 

along the equatorial groove (Fannon et al. 1992a, Fannon et al. 1992b). Later these pores 

were reported to be openings to serpentine, radial, tube-like channels that penetrate into the 

granule interior, connecting the central cavity to external environment (Fannon et al. 1993, 

Huber & BeMiller 1997, Ruber & BeMiller 2000). Pores were absent in many other starches 

studied. Pores were reported as normal, real, anatomical features of native granules and were 

not artifacts produced by isolation, preparation or observation techniques. Although Fannon 

proposes that pores affect the pattern by amylases, it is still contentious whether the pores are 

in fact the product of amylase attack during experimental procedures, and variation in 

susceptibility of granule surface to amylase attack, which would create the sporadic 

distribution of surface pores observed, has been reported (Evers & McDermott 1970, Fuwa et 

al. 1977, Fuwa et al. 1979). 

Table 4. Granule size and morphology of starches from various botanical sources. 
Starch Granule diameter (fxm) Shape Descriptors 
Acorn 
Adzuki bean 
Ae 1-5108 maize 

Dome-shaped 

Round1, smooth surface1 
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Table 4. (continued) 
Starch Granule diameter (nm) Shape Descriptors 

Irregular , rough-edged 
Bimodal38, unimodal38 

Spherical34, ovoid34, discoid34, 
shallow-bowl34 

Polygonal1,15,19, smooth surface15 

Smooth1, irregular1, rod-shaped1 

Smooth1, irregular1, rod-shaped1 

Smooth1, oval1, round1, 
Egg- and barrel-shaped1, smooth1 

Dome- and egg-shaped1, 
hemispherical1 

Oval5 elongated5'45, irregular1,45, 
discoid1, flat45, smooth45 

Bimodal1,29, oval29, round29, disk-
shaped1, dumb-bell shaped36 

Large lenticular with pinholes, 
equatorial grooves and furrows36, 
small irregular36, angular36, 
polyhedral36 

Smooth1, oval1 

Bimodal11, rounded11 

Amaranth 
Amylomaize-5 
Amylomaize-7 
Arrowroot 
Avocado 
Babassu 

Banana 

Barley 

Barley, hull-less wx 

Barley, high amylose 
Bean, green 
Bitter yam 
Black bean 

Buckwheat 
Canna (achira) 
Cattail millet 
Chickpea (garbanzo) 
Chinese taro 
Cocoyam 
Cow cockle 
Cow pea 
Dasheen 
Diffenbachia 

Du waxy maize 
Enset 
Ginger 
Gingko 

38 
Ae waxy maize 5-15 
Aegilops 4-27 
Algae, red 1.7-3.4 34 

0.5-21; 1-219; 0.75-1.515 

10-151  

6-151 

8-301 

10-271 

8-151 

20-505; 15-45l 

2-3 and 
15-321 

4.5-15.6 

2-3 and 10-5029'30:2-3 and 

36 

5.2-13.236 

10-451 

4-5 and 911 

7-30 ,41 

2-618; 5-101, 1737 

30-1001; 35-10122 

3-151 

9-3041, 10-271 

1-41 

0.05-1.0542 and 0.3-1.842 

0.5-2' 
10-351 

0.5-31 

15-801 

5-15' 
20-7012 

15-60' 
5-2025 

Grass pea seed 15-334 

Huaishan 19-29 
Jicama 25-30 

,47 

1 

Round41, irregular41, elliptical41; .41 i41. 

,41 oval 
Spherical18, oval18, polygonal1'18 

Smooth1, ellipsoidal1, spherical1 

Irregular1, polygonal1 

Irregular1, indented cut at one end1 

Irregular1, polygonal1 

Small oval 2, kidney-shaped42 

Irregular1, polygonal1 

Ellipsoidal 
Irregular1, polygonal1 

Disk-shaped1, irregular1, rod-
shaped1, submarine1 

Irregular1, smooth1 

Angular12, elliptical12 

Disk-shaped1 

Spherical25, oval25, smooth 
surface25 

Oval4 

Spherical47 

Round1, polygonal1, irregular1 
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Table 4. (continued) 
Starch Granule diameter (jam) 

44 
Shape Descriptors 

• m .—; ff—r Kiwifruit 
Kuzu 

Lentil 

Lily 

Lima bean 
Lotus root 
Maize, normal 

Maize, waxy 

Maize ae 
Maize ae btl 
Maize ae dul 
Maize btl 
Maize bt2 
Maize dul 
Maize dul sul 
Maize h 
Maize h sh2 
Maize h wx 
Maize sh2 
Maize sh2 btl 
Maize sh2 wx 
Maize sul 
Maize wx dul 
Matai 
Mungbean 

Narcissus, white 
Navy bean 

Oat 

6-8 

5-30 ,26 

3-3024; 7-2841, 10-201 

18-3028; 20-701 

10-451; 10-527 

10-50' 
2-3221; 5-201, 5-3043 

5-18' 

4-11 
3-10 
4-14 

46 

,46 

46 

,46 4-9 
6-19 
4-11 
3-12 
8-22 
6-23 
3-2046 

2-946 
3_p46 

4-16 

,46 

46 

46 

46 

46 

46 

,46 

,46 

'47 

2-10 
4-19 
6-16 
10-27% 22 37 

5-40' 
8-32 41 

4-531; 2-151, 3.8-10.539 

Oxalis 22-5522; <7 and 10-50» 
Parsnip 1-61 

Pea, green, smooth 10-451; 14-3241, 22-3010; 2-
4020 

Pea, wrinkled 10-4020 

Spherical , irregular , polygonal 
Spherical26, hemispherical26, 
polygonal26 

Ovoid24'41, spherical24, smooth1, 
indents1, elliptical41, irregular41 

Slender28, ovoid28, elliptical28, 
polygonal28 

Oval7, smooth1, ellipsoid1, 
Oval1, round1 

Irregular1, polyhedric1, sharp-
edged1 

Irregular1, polygonal1, rough-
edged1 

44 

Spherical47 

Oval1,irregular1, pronounced 
indents1 

Smooth1, irregular1 

Round41, irregular41, elliptical41, 
oval41 

Compound39, clustered39, 
Polyhedral1'31, polygonal39, 
irregular1'31 

Compound9, assymetrical9 

Irregular1, polygonal1 

Spherical1"-2", oval^"4', 
irregular10,41, discoid1, elliptical41 

Compound20, 4-6 granules in a 
ring' .20 
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Table 4. (continued) 
Starch Granule diameter (fam) Shape Descriptors j 4 4 

Round , oval, hemispherical 
Irregular1, polygonal 
Compound1, irregular1, 
multifaceted1 

Smooth1, spherical1, round41, 
elliptical41, oval41, irregular41 

Rounded16, oval16, smooth1 

Polygonal19 

Compound1'8, polyhedral1'8'14, 
ellipsoid8 

Bimodal1, Spherical1, disk-shaped1 

Oval2 

Smooth1, Disk-shaped1, indented 
curves1, lenticular1 

Bimodal1, spherical1, lenticular1 

Trimodal1, round1 

Angular16, spherical17'23, 
polygonal11 ,23 

Smooth1, irregular1, rounded11 

Compound43, polygonal43, cubic43 

Bimodal1, spherical1, lenticular1 

Round13, elliptical13, polygonal1 

Ellipsoid11, rounded1 

Rounded16, oval16 

Compound1, irregular1, polygonal1 

Bimodal35, spherical35, disk-
shaped35 

Bimodal33, spherical33, lenticular33 

Polyhedral11 

Angular16 

Spherical40, irregular40 

Polyhedral11, ellipsoid11 

Dome-shaped1 

Peijbaye 
Pigweed 
Pineapple stem 

Pinto bean 

Potato 
Quinoa 
Rice 

Rye 
Sago 
Shoti 

Sorghum 
Sweet corn, 
immature 
Sweet potato 

Tapioca 
Tef 
Triticali 
Water chestnut 
Water yam 
Waxy potato 
Waxy rice 
Wheat, 
commercial 
Wheat, durum 
White yam 
White carrot 
Yam 
Yam bean 
Yellow yam 
Yucca 

3-10 
1-21 

3-101 

6-3241, 10-271 

15-751; 40-6027; 12-7016 

<13; 1-219; 0.3-230 

3-81; 3-58; 2-814 

2-3 and 22-361 

20-501; 20-402 

24-601 

5 and 10-301 

1-2 and 5 and 10-121 

5-251; 4-1516; 8-1117; 14-34 
2-4232 

5-226; 5-251; 5-2011 

2-643 

5 and 22-361 

10-3013; 5-271 

31-35" 
12-7216 

3-81 

2-3 and 22-361; 2-5 and 18-
333^ 
2-8 and 10-4033 

31-3511 

7-2322 

4-2016 

4-3540 

10-5011 

5-251 

23. 

1 = Jane et al. (1994), 2 = Ahmad et al. (1999), 3 = Lorenz (1990), 4 = Akalu et al. (1998), 5 = Bello-Pérez et al. (2000), 6 = 
Atichokudomchai et al. (2001), 7 = Betancur et al. (2001), 8 = Champagne (1996), 9 = Cortella & Pochettino (1995), 10 = Davydova et al. 
(1995), 11 = Farhat et al. (1999), 12 = Gebre-Mariam & Schmidt (1996), 13 = Hizukuri et al. (1988), 14 = Hoover et al. (1996), 15 = 
Hoover et al. (1998), 16 = MePherson & Jane (1999), 17 = Noda et al. (1995), 18 = Qian & Kuhn (1999a), 19 = Qian & Kuhn (1999b), 20 = 
Ratnayake et al. (2002), 21 = Sahai & Jackson (1996), 22 = Santacruz et al. (2002), 23 = Shin & Ahn (1983), 24 = Sotomayor et al. (1999), 
25 = Spence & Jane (1999), 26 = Suzuki et al. (1981), 27 = Suzuki et al. (1994), 28 = Takeda et al. (1983), 29 = Tang et al. (2000), 30 = 
Tang et al. (2002), 31 = Tester & Karkalas (1996), 32 = Tian et al. (1991), 33 = Vansteelandt & Delcour (1999), 34 = Yu et al. (2002), 35 = 
Yoo & Jane (2002), 36 = Li et al. (2001a), 37 = Cho & Kim (2000), 38 = Stoddard & Sarker (2000), 39 = Hoover et al. (2003), 40 = Forsyth 
et al. (2002), 41 = Hoover & Ratnayake (2002), 42 = Sefa-Dedeh & Sackey (2002), 43 = Bullosa et al. (2002), 44 = Sugimoto et al. (1988), 
45 = Fuwa et al. (1979), 46 = Wang et al. (1993c), 47 = Yu et al. (1999) 
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Phosphorus Content 

Incorporation of phosphorus into starch is considered to proceed concurrently with 

starch synthesis (Nielsen et al. 1994), and recently speculated to be produced by starch-

branching enzymes utilizing phosphorylated a-1—>4 glucans (Viska-Nielsen et al. 1998). 

Although initial step remains unknown, glucose-6-phosphate has been suggested as a 

precursor (Wischmann et al. 1999). Starch contains three types of phosphorus, esterified 

phosphates, phospholipids and inorganic phosphorus, all in small quantities, but amounts 

vary depending on botanical source as illustrated in Table 5. Phosphate monoester groups 

are found exclusively in amylopectin at a frequency of one atom of phosphorus per 220-250 

anhydroglucose units (AGU) (Schoch 1942, Gracza 1965, Abe et al. 1982). Potato 

amylopectin contains the greatest amount of phosphate monoesters (0.085-0.09 %, dry basis), 

with all other starches considerably lower (0.021% or less) (Jane et al. 1996, Kasemsuwan & 

Jane 1996). Root and tuber starch phosphorus contents consisted almost entirely of 

phosphate monoesters (Kasemsuwan & Jane 1996). Cereal starches contain mainly 

phospholipids, typically greater than 0.048%, however maize is considerably lower 

(0.016%). Waxy starches contain very low levels of phosphorus (Jane et al. 1996). Jacobsen 

et al. (1998) demonstrated that phosphorus content of potato starch increased by supplying 

developing tubers with phosphorus fertilizer. 

Postemak (1935, 1951) determined phosphate groups were located at C-6 primary 

hydroxyl group, and later this was confirmed to be present proportionally at two-thirds, along 

with one-third occurrence of phosphate at C-3 and trace amounts at C-2 (Hizukuri et al. 

1970, Tabata & Hizukuri 1971, Lim & Seib 1993b). Phosphorylation at C-3 was 

independent of potato variety, while substantial variation at C-6 was observed, suggesting 
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different regulation at the two phosphate sites (Muhrbeck & Tellier 1991). Bay-Smidt et al. 

1994 found the level of C-6 bound phosphorus per milligram of potato starch increased 50% 

from the cortex towards the pith. Phosphate monoesters were not found on non-reducing 

terminals of a-l->4 linked unit chains (Tabata et al. 1978). Average chain-length of 

phosphorylated potato starch is approximately DP 40, indicating these phosphates link 

mainly to long B-chains (Takeda & Hizukuri 1982). Phosphate monoesters are located a 

minimum of nine anhydroglucose units inward from a branch point (Takeda & Hizukuri 

1982). Decrease in organic phosphate and increase in inorganic phosphate during storage of 

autoclaved starch has been observed (Sugimoto & Goto 1966). 

Glucoamylase has been used to study in further detail the location of phosphate 

monoesters because of its inability to bypass phosphorylated AGU, with the C-3 phosphate 

group more obstructive than C-6 (Takeda et al. 1983). Exhaustive digestion of potato starch 

(one phosphorus atom per 209 AGU) with glucoamylase yielded 17% y-dextrin with one 

phosphorus per 36 AGU and average chain-length of 14. Since phosphorus in potato starch 

was concentrated in the 17% y-dextrin, it was concluded that either few amylopectin 

molecules are highly phosphorylated or phosphate monoesters are concentrated locally 

within starch granule (Abe et al. 1982). Additionally, Jane & Shen (1993) determined by 

stepwise chemical gelatinization that phosphorus was densely located in the core of potato 

starch granules together with amylopectin. 

Lipid content of starch from Triticeae comprise predominantly of lysophospholipids, 

particularly lysophosphatidyl-choline, -ethanolamine, -serine, -inositol, and -glycerol, 

respectively (Morrison 1988). Starches from other cereals have much higher proportions of 

free fatty acids. The most predominant fatty acid of all cereal starches is linoleic acid, except 
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for rice and rye where palmitic and oleic acid are the major component, respectively 

(Morrison 1988). Lysophospholipid content of wheat starch has been shown to decrease with 

granule size but increase with granule maturity. Starch deposited on both A- and B-granules 

at successive development stages contained higher proportions of lysophospholipids than 

initial deposits. A close relationship was established between amylose and lysophospho lipid 

contents, but this relationship was different for A- and B-granules. Due to the oblate and 

lenticular shape of wheat A-granules, gradients of starch and lysophospholipids occur along 

outer parts of any radius from the hilum. The role lysophospholipids play in starch synthesis 

was concluded to be different in the two types of wheat starch granules (Morrison & Gadan 

Table 5. Phosphorus content (% dry starch weight) of starches from various botanical 

1987). 

sources. 
Starch Monoester-Phosphate 
Normal maize 
Amaranth 
Wheat 
Rice 
Oat 
Millet 

0.13-0.4614 

0.011 

0.0131 

0.053'-o.osg4'17 

0.032 -0.048 
0.056' 
0.0581 

0.022-0.0615 

|5 A ft/iol 

Barley 
Waxy maize 
Waxy rice 
Waxy potato 
High-amylose maize 
Potato 

0.0021, 0.0117 

0.0031 

0.069" 
0.013' 
0.05-0.06", 0.076'13,0.0817, 
0.0891-0.163, 0.37-0.9718 

0.0111, 0.012-0.01419, 
0.02" 
0.008', 0.01^'7,0.007^-
0.0129 

0.022-0.0211 

0.01l1 

0.0046 

0.0046 

0.0177 

0.014 

Sweet potato 

Tapioca 

Arrowroot 
Mungbean 
Navy bean 
Pinto bean 
Kidney bean 
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Table 5. (continued) 
Starch Monoester-Phosphate Phospholipid 
Green pea 0.004 
Ginger 0.04511 

Gingko 0.00616 

Water chestnut 0.0312 

Yam 0.012" 
Sago 0.01-0.0152 

References 1 = Jane et al. (1996), 2 = Posternak (1935), 3 = Muhrbeck & Tellier (1991), 4 = Gracza (1965), 5 = Hizukuri et al. (1983), 6 = 
Kim et al. (1996), 7 = Yoshida et al. (2003), 8 = Liu et al. (2003), 9 = Rickard et al. (1991), 10 = Soni et al. (1985), 11 = Jyothi et al. (2003), 
12 = Hizukuri et al. (1988), 13 = McPherson & Jane (1999), 14 = Pérez et al. (1993), 15 = Song & Jane (2000), 16 = Spence & Jane (1999), 
17 = Swinkels (1985a), 18 = Suzuki et al. (1994), 19 = Takeda et al. (1986) 

STARCH FUNCTIONAL PROPERTIES 

Gelatinization 

Gelatinization is frequently described as the range of irreversible events occurring 

when starch is heated in water. While heating is the most common method of starch 

gelatinization, technically gelatinization can occur without additional heat when starches are 

dispersed in solutions possessing crystal destructing properties. Non-thermal methods of 

gelatinization include use of alkali, dimethyl sulfoxide, cations and water structure breaking 

compounds. Alkali such as NaOH and KOH interact with the proton of the anhydroglucose 

hydroxy! group, giving starch a negative charge that exerts a repelling force on starch 

polymer chains, causing the double helix to be pulled apart, thereby gelatinizing starch 

(Maher 1983, Kim et al. 1984). Dimethyl sulfoxide acts as a hydrogen bond acceptor to pull 

apart double helix. Cations that carry high positive density charge, such as CaCl2 (Jane & 

Shen 1993, Koch & Jane 2000) and LiCl (Ahmad & Williams 1999, Pan & Jane 2000), can 

cause an exothermic reaction and heat released will melt starch crystallites. Water structure 

breaking compounds such as KI03 and NaSCN have large volume but low charge density 

that breaks hydrogen bonds in water to enhance solubilization and gelatinization of starch at 

room temperature. 
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Not all combinations of starch, water and temperature result in gelatinization. There 

is a minimum level of water content and a certain temperature that has to be reached. 

Additionally, despite the name "gelatinization", not all combinations of water and heat that 

result in gelatinization, will result in gel formation. Gelatinization temperature is always a 

temperature range. For a single granule in excess water, the gelatinization temperature range 

might be 1-2°C, whereas an entire population of starch granules can range from 5-15°C 

(Evans & Haisman 1982, Liu & Lelievre 1993). Gelatinization temperatures and enthalpy 

change of gelatinization for starches from various botanical sources is listed in Table 6. 

Many factors affect gelatinization temperature and gelatinization temperature range, 

with the most critical being water content. Water is present in both amorphous and 

crystalline regions of starch granules (Eliasson et al. 1987). Water acts as a plasticizer for the 

starch crystallites (Donovan 1979) and X-ray diffraction pattern disappears if starch is 

completely dried (French 1984). Presence of water will decrease glass transition temperature 

(Tg) and as a consequence, decrease temperature that crystallites melt. Although starch 

granules are built up of polymers that are hydrophilic, the starch granule is not soluble in 

water due to its semi-crystalline structure and hydrogen bonding between hydroxyl groups of 

starch polymers. A proportion of water, typically 0.25-0.4 g water/g starch will not freeze, 

even at temperatures below -50°C (Wootton et al. 1974, Leung & Steinberg 1979, Eliasson 

1985). When dry starch granules are placed in water, a small amount of water is absorbed 

which is an exothermic process (French 1984). As temperature increases, amount of 

absorbed water by starch granules increases. Until the onset gelatinization temperature (T0), 

water uptake by starch granules is reversible. 
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In polarized light, ungelatinized starch granules show a distinctive birefringence 

pattern called the "Maltese Cross" (Fitt & Snyder 1984). Birefringence begins to disappear 

as T0 is reached, indicating order is beginning to be lost in starch granule, but not necessarily 

crystallinity. Gelatinization temperature range can be determined by following loss of 

birefringence in excess water (Moss 1976). At low water content (< 8%), birefringence was 

not destroyed by heating wheat starch to 232°C (Burt & Russell 1983). 

Loss of crystallinity occurs in two steps: at first loss occurs at a very low rate, but 

then at a temperature specific to each starch, the rate increases dramatically (Svensson & 

Eliasson 1995). Starch gelatinization is an endothermic process with enthalpy values 

typically 10-19 J/g. Some researchers suggest that melting of starch crystallites is preceded 

by glass transition (Zeleznak & Hoseney 1987, Slade & Levine 1988). For application of 

starches for food industries, functional properties of starch events occurring after melting of 

crystalline structure, such as water-holding capacity or rheological properties are important. 

When starches are heated in excess water, granules can swell to a similar degree in all 

directions, such as maize or potato (Williams & Bowler 1982) or swell unevenly, such as for 

wheat and barley (Bowler et al. 1980). Starch granule swelling typically results in over 

double expansion in granule diameter (Ziegler et al. 1993). Swelling of starch begins at T0 

but continues to much higher temperatures than conclusion gelatinization temperature (Tc) 

(Tester & Morrison 1990). Swelling is not affected by presoaking before heating, but 

increases with water/starch ratios up to 25 mL water/g starch. Swelling increases with 

defatting for the majority of starches (Tester & Morrison 1990), but for oat and pigeon pea 

starches, defatting decreases swelling (Doublier et al. 1987, Hoover & Vasanthan 1992, 

Hoover et al. 1993). Increased shearing will increase swelling (Doublier 1987), but severe 
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shearing will cause fragmentation of granules (Svegmark & Hermansson 1991). Higher 

heating rates result in greater swelling ratio of cereal starches (Ellis et al. 1989). Waxy starch 

varieties have higher gel volumes than higher amylose starch varieties (Colonna & Mercier 

1985, Tester & Morrison 1990). 

During heating, and at the same time as absorption of water, amylose is leached from 

starch granules, and to a lesser extent amylopectin is leached depending on starch and 

conditions (Doublier 1981, Ellis et al. 1988, Tester & Morrison 1990, Svegmark & 

Hermansson 1991). Lipids are not leached from starch granules during gelatinization (Tester 

& Morrison 1990). At low temperatures (50-70°C), leached material from starch granules 

comprises entirely of amylose, but as temperature increases above 70°C, the leached material 

increases in molecular weight and is more branched (Ellis & Ring 1985, Doublier 1987, 

Prentice & Stark 1992). For some starches such as oat, leached amylose forms a network 

structure around granules (Autio 1990). If starch contains a proportion of enzymatically or 

mechanically damaged starch then amylopectin of low molecular weight can be 

preferentially leached (Craig & Stark 1984). For some starches such as maize, most of the 

amylose is solubilized before leaching of amylopectin starts (Doublier 1981) whereas in oat 

starch, coleaching of amylose and amylopectin occur (Doublier et al. 1987, Hoover & 

Vasanthan 1992). A proportion of amylose frequently remains inside starch granule and is 

never leached during heating (Ellis et al. 1988). 

If the water content is lower than that required for gelatinization but the temperature 

is at least sufficient for gelatinization, then starch is exposed to heat-moisture treatment 

(Kulp & Lorenz 1981, Lorenz & Kulp 1981a). If samples are subsequently gelatinized, their 

properties will have been altered such as increase in T0 and Tc, broader gelatinization 
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temperature range, decreased swelling power and decreased solubility (Kulp & Lorenz 1981, 

Donovan et al. 1983, Hoover & Vasanthan 1994). Heat-moisture treatment causes a change 

in type of crystallinity from less stable polymorphs (that exhibit B- or C-pattern of X-ray 

diffraction) to most stable form (A-pattem) (Lorenz & Kulp 1982, Donovan et al. 1983). 

If the water content is high enough for gelatinization but temperature is too low, 

conditions might be suitable for annealing, a process that improves crystallinity. 

Temperature to achieve annealing (TA) must be below T0 but above Tg, otherwise system is 

too rigid. In this temperature range, least perfect crystallites melt and molecules will 

crystallize on other more perfect crystals. Gelatinization temperature range moves to higher 

temperatures and becomes narrower (Gough & Pybus 1971, Knutson 1990, Larsson & 

Eliasson 1991, Seow & Teo 1993, Hoover & Vasanthan 1994). Annealing has been reported 

to occur as early as 24-72 hours of steeping cereal grains (Lorenz & Kulp 1978, 1981b, 1984, 

Knutson 1990, Larsson & Eliasson 1991) with the important parameter not being time but 

difference between T0 and TA. If T0-TA is 20-25°C or more then no annealing occurs, 

whereas a 5°C difference can cause substantial increase in T0 (Larsson & Eliasson 1991). 

Effect of annealing decreases with increasing amylose content and there is no leaching of 

amylose during annealing (Knutson 1990). Granule swelling usually decreases due to 

annealing (Lorenz & Kulp 1984). 

Table 6. Onset gelatinization temperature (T0), peak gelatinization temperature (Tp), 
conclusion gelatinization temperature (Tc) and enthalpy change of gelatinization (AH) for 
starches from various botanical sources. 

Starch To Tp Tc AH 
Achira (canna) 56.8^ 61.225 67.725 15.725 

Amaranth, commercial 66.3» 74.5» 86.9» 2.6» 
Amaranth, waxy 66.7* 70.2* 75.2* 16.3* 
Amaranth cv. African 69.8* 76.3* 00

 

Is
 

12.3* 
Amaranth cv. Mexican 68.7* 78.5* 87.045 12.5* 
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Table 6. (continued) 
Starch To TP Tc AH 
Arrowroot 49.5-61.52(J 

Banana cv. Criollo 71.4" 75.0" 80.437 14.8" 
Banana cv. Macho 69.6" 74.5" 81.6" 13.0" 
Banana cv. Nandigobe 69.527 73.327 78.727 10.027 

Banana cv. Valéry 69.5^ 74.622 81.222 5.2^ 
Barley cv. CDC Alamo 54.5' 61.8' 74.5' 12.6' 
(hull-less waxy) 

55.4' 61.9' 73.8' 13.1' Barley cv. CDC Candle 55.4' 61.9' 73.8' 13.1' 
(hull-less waxy) 

52.0' 58.1' 72.5' 12.7' Barley cv. CDC Dawn 52.0' 58.1' 72.5' 12.7' 
Barley, high amylose 53.2' 62.0' 74.4' 12.0' 
Barley,normal,compound 50.1' 59.9' 72.0' 13.5' 
Barley cv. Glacier 55.0* 59.0* 9.2* 
Barelycv Glacier hi AM 55.5* 62.8* 7.7* 
Barley hull-less Glacier 56.5* 63.2* 7.3* 
Barley cv. Glacier Pentld 61.326 

Barley cv. Golden Prom. 57.926 

Barley cv. Phoenix 53.1' 59.1' 71.0' 12.8' 
Barley cv. Triumph 59.026 

60.3* 13.0* Barley cv. W.B. Merlin 55.4* 60.3* 13.0* 
Barley, waxy 56.1'; 60.026 62.1' 75.8' 13.1' 
Barley, waxy,compound 50.5' 64.5' 74.5' 9.6' 
Bitter yam 78.14' 81.34' 86.441 

Black bean 62.0-66.9^ 69.9-76.5^ 82.8-84.230 12.530 

Bracken 59.5-62.5%) 
Buckwheat 51.5-62.3'" 57.2-66.7'" 9.4-13.9'" 
Canna, green leaf 59.3* 65.4* 80.3* 15.5* 
Chick pea (garbanzo) 59.5^ 64.7-67.730 71.1-78.230 9.7-12.430 

Chinese taro 67.3* 72.9* 79.8* 15.0* 
Cocoyam 745' 785' 875' 4.06-5' 
Dioscorea 64.2^ 68.242 74.842 19.2^ 
Ebiimo (yam) 71.020 

Enset 61.843 65.243 71.T43 21.643 

Ginkgo 60.855 67.155 78.755 14.655 

Grass pea seed 61.336 10.936 

Kiwifruit cv. Abbot 57.9* 66.7* 70.6* 3.9* 
Kiwifruit cv. Bruno 59.934 63.7* 68.3* 3.4* 
Kiwifruit cv. Hayward 62.4* 65.2* 69.5* 4.3* 
Koimo (yam) 64.520 

Kuzu 59.0-66.520 

Lentil 60.7-63.030 66.1-69.630 76.1-78.730 13.030 

Lily 56.0-59.520 

Lima bean 75^ 8738 
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Table 6. (continued) 
Starch T0 T% Tç AH 
T ——— _________ —. _ 1 1 i r59 Lotus root 58.5-62.020; 66.2^ 71.159 13.559 

60.6^9 

Maize, normal 59.8'; 60.023; 66.9^3; 74.959; 9.723; 
63.243; 64.159 69.0*; 75.243; 7747 12.435'59; 
65.0»; 65.6"; 69.4^; 77.223; 13.8"; 
67.435'; 6847 70.555; 77.8'; 15.5'; 16.2 

7147; 78.5"; 8032 

15.5'; 16.2 

73.032 

Maize, amylomaize V 71.059 81.359 112.659 19.559 

Maize, amylomaize VII 70.659 

67.1'; 
129.459 16.259 

Maize, waxy 60.6'; 63.5- 67.1'; 74.6^; 13.3'; 
67.5^; 64.2^; 69.2^; 7547 78.1'; 8047 13.9^; 
6747; 68.135 

69.2^; 7547 78.1'; 8047 

15.459 

Maize cv. A632 67.929 72.2^ 78.2^ 12.029 

Maize cv. A632 du 61.129 72.629 79.429 9.129 

Maize cv. A632 su2 58.729 63.9^ 70.429 3.42» 

Maize ae btl 63.7" 2.0" 

Maize ae dul 65.6" 1.2" 

Maize ae wx 71.559 81.059 97.2^ 22.0^9 

Maize cv. B73 65.3"; 67.22 71.12 11.62; 13.3 

Maize du 6747 7147 7647 

Maize dul sul 62.3" 1.713 

Maize du wx 66.159 74.259 80.5^9 15.6'9 

Maize cv. Hz85 69.9^9 74.029 80.5^ 12.329 

Maize cv. Hz85 du 69.629 74.329 79 729 9.129 

Maize cv. Hz85 su2 59.029 62.629 68.629 5.2^ 
Maize cv. Mo 17 65.03; 66.22 70.82 12.62; 13.8" 
Maize cv. Oh43 71.I29 75.029 81.729 12.629 

Maize cv. Oh43 du 70.429 74.029 79.Sf9 12.029 

Maize cv. Oh43 su2 57.029 61.829 67.529 4.829 

Maize su2 5447 5847 6447 

Millet, cattail 67.159 71.759 75.659 14.459 

Millet, foxtail 64-6915 70-7715 76-84" 10-1815 

Mungbean 60.059 65.3^9 71.559 11.459 

Nagaimo (yam) 60.0-65.020 

Navy bean 65.83° 74.730 84.930 13.430 

Oat, commercial 6146 66^ 7346 10.446 

Oat cv. Alymer 57.02' 61.521 69.02' 13.72' 
Oat cv. Antoine 58.521 63.521 70.52' 13.22' 
Oat cv. Baton 63.021 64.521 72.021 12.92' 
Oat cv. Borrus 46.756 59.5^ 73.056 9.2^ 
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Table 6. (continued) 
Starch To TP Tc AH 
Oat cv. Erbgraf 46.3* 56.8* 68.7* 8.156 

Oat cv. Erich 45.6* 58.5* 69.2* 8.1* 
Oat cv. Ernie 56.021 59.52^ 65.521 14.621 

Oat cv. Francis 60.021 63.521 70.521 13.521 

Oat cv. Gosline 63.52' 66.021 74.021 12.421 

Oat cv. Pendragon 47.3* 58.2* 72.3* 9.5* 
Oat cv. Pitol 44.8* 57.1* 73.7* 9.0* 
Oat cv. Selma 44.7* 56.2* 72.0* 9.0* 
Oxalis (oca) 50.225 55.92^ 63. 14.625 

Pea, green 56.135 

6051 7351 
9.53^ 

Peruvian carrot 56^' 6051 7351 4.251 

Pigeon pea 6460 7160 yy60 

15.830 Pinto bean 72^30 75.330 80.83° 15.830 

Potato, commercial 58.743; 59.841; 62.643; 67.4-68.9"; 11.9-12.2"; 
60.0-61.68; 63.4-64.6"; 68. I*3; 17.349; 
60.849; 61.0- 64.341; 69.3*'; 17.8^; 
62.52°; 63. l3^ 65.2^ 70.649 19.843 

Potato, waxy 62.5*9 66.649 70.2*9 18.249 

Quinoa 59.952 64.552 71.052 1.752 

Red kidney bean 61.52* 66.82* 90.824 15.424 

Rice, commercial 68.57; 70.3* 75.77; 80.2*; 84.07 6.37; 13.2* 68.57; 70.3* 
76.2* 

80.2*; 84.07 6.37; 13.2* 

Rice, sweet 58.6* 64.7* 71.4* 13.4* 
Rice, waxy 56.9*; 58.^ 63.2* 70.3* 15.4* 
Rice cv. Cypress 72.131 77.631 14.131 

Rice cv. Hokuriku 68.4'* 
Rice cv. IR5 69.07 76.57 87.87 8.57 

Rice cv. IR8 66.3* 69.7* 74.14 8.64 

Rice cv. IR28 62.67 68.07 76.57 3.67 

Rice cv. IR32 69.020; 70.37 77.27 88.27 9.27 

Rice cv. IR42 59.57 66.11 78.77 5.67 

Rice cv. Milky Queen 70.516 

Rice cv. Nipponbare 68.916 

Rice cv. Sassnidhiki 58.5^ 
Rice cv. Snow Pearl 67.116 

Rice cv. Tainung 61.99 70.19 7.49 

Rice cv. T(N)1 67.39 74.19 8.r 
Rice cv. Yumetoiro 66.416 

Sago 64.117; 64.450; 70.017; 76.717; 5.4^°; 
69.4-70.135 70.450 80.450 14.317; 15.1-

16.735 

Smooth pea 55-6I53; 60- 6O-6853; 73.4-74.530; 10.8-13.830; 
63*°; 61.33° 67.23° 75-8053 14-2340'53 



www.manaraa.com

52 

Table 6. (continued) 
Starch To Tp Tc AH 
Sorghum 

7339 

67.3-68.85 

81* 
7.7-9.5" 

Soybean 7339 

65.9" 
81* 

13.8" Squash, buttercup 62.133 65.9" 74.133 13.8" 
Squash, butternut 63.3" 67.3" 74.6" 12.6" 
Sweetpotato, commercial 55.7-73.118; 61.3- 71.949 12.7-16.8'"; 

57.9^; 63.5- 77.618; 13.5*9 
71.020 63.1*9 

64.848 Sweetpotatocv Kanto 116 39.048 46.948 64.848 OO
 

>
 

Sweetpot Koganesengan 59.9*"; 72.6'* 67.3*"; 82.2*"; 12.4 ; 
77.2'* 89.514 13.114 

Sweet potato cv. Kyushu 64.6*8; 74.314 71.2*"; 84.848; 13.74"; 
78.414 90.114 13.914 

Sweet potato cv. Norin 72.914 78.014 89.814 14.114 

Sweetpotat Shirosatsuma 71.614 76.614 89.714 13.214 

Tapioca 52.0-58.020; 68.3*; 74.4*; 14.7*; Tapioca 
64.1*'-; 64.3*; 69.041 76.441 15.135 

66.3^ 
Takenokoimo (yam) 71.520 

Tef 67.032 73.532 80.032 

Water chestnut 58.7*; 62** 70.159 82.8* 13.6* 
Water yam 76.541 78.8*' 81.94' 
Wheat, commercial 51.0-58.520; 58.9^"; 63.8^"; 6.1-7.5*; 

54.9^"; 57**'* 62*4*; 66.2*; 67** 10.658'59; 
62.4- 11.546 

63.7*^" 
Wheat, durum 50.7" 56.3" 62.7" 13.5" 
Wheat, waxy 55.6'2; 55.7^" 61.458; 67.6^"; 10.312; 

63.512 73.512 13.6^" 
Wheat, wild 51.912 60.8'2 71.412 92iz 
Wheat cv. Centura 55.6^" 59.158 63.1^" 10.758 

Wheat cv. Chikugoizumi 
60'9 

62.110 12.3'° 
Wheat cv. Condor 60'9 66'9 7519 11.319 

Wheat cv. Insignia SB'9 63'9 7119 11.319 

Wheat cv. Kanto 107 57.5^" 62.1^" 67.058 11.858 

Wheat cv. Nishihonami 62.6'° 12.3'° 
Wheat cv. Norin 59.4'° 11.0'° 
Wheat cv. Rosella 6119 66'9 7419 12.419 

Wheat cv. Saikai 60.110 ll.l10 

White carrot 53.82^ 60. l2^ 65.9^ 17.625 

White yam 71.541 74.841 80.541 

Yam 64.6*9 70.949 77.849 13.349 

Yam bean 58.8-68.52" 9.1-14.22" 
Yellow yam 69.4*' 72.941 76.741 
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1 = Li et al. (2001b), 2 = Ji et al. (2003), 3 = Seetharaman et al. (2001), 4 = Sodhi & Singh (2002), 5 = Beta & Corke (2001), 6 = Akashi et 
al. (1999), 7 = Bhattacharya et al. (1999), 8 = Kaur et al. (2002), 9 = Lai (2001), 10 = Noda et al. (2001), 11 = Yamin et al. (1999), 12 = 
Demeke et al. (1999), 13 = Wang et al. (1993a), 14 = Noda et al. (1993), 15 = Inouchi et al. (1993), 16 = Kuno et al. (2000), 17 = 
Hamanishi et al. (2000), 18 = Noda et al. (1998), 19 = Wootton et al. (1998), 20 = Suzuki (1993), 21 = Hoover et al. (2003), 22 = 
Waliszewski et al. (2003), 23 = Fiedorowicz & Rçbilas (2002), 24 = Yoshida et al. (2003), 25 = Santacruz et al. (2003), 26 = Kiseleva et al. 
(2003), 27 = Lehmann et al. (2002), 28 = Forsyth et al. (2002), 29 = Li & Corke (1999), 30 = Hoover & Ratnayake (2002), 31 = Wang et al. 
(2002), 32 = Bullosa et al. (2002), 33 = Sugimoto et al. (1998a), 34 = Sugimoto et al. (1988), 35 = Ahmad et al. (1999), 36 = Akalu et al. 
(1998), 37 = Bello-Pérez et al. (2000), 38 = Betancur et al. (2001), 39 = Hoover et al. (1991), 40 = Davydova et al. (1995), 41 = Farhat et al. 
(1999), 42 = Gebre-Mariam & Schmidt (1998), 43 = Gebre-Mariam & Schmidt (1996), 44 = Hizukuri et al. (1988), 45 = Hoover et al. 
(1998), 46 = Hoover & Vasanthan (1992), 47 = Inouchi et al. (1984), 48 = Katayama et al. (2002), 49 = McPherson & Jane (1999), 50 = 
Maaurf et al. (2001), 51 = Pérez et al. (1998), 52 = Qian & Kuhn (1999a), 53 = Ratnayake et al. (2002), 54 = Song & Jane (2000), 55 = 
Spence & Jane (1999), 56 = Tester & Karkalas (1996), 57 = Vansteelandt & Delcour (1999), 58 = Yoo & Jane (2002), 59 = Jane et al. 
(1999), 60 = Hoover et al. (1993) 

Starch Rétrogradation 

Changes that occur in gelatinized starch, from initially an amorphous to more ordered 

or crystalline state, are termed rétrogradation. Changes occur because gelatinized starch is 

not in thermodynamic equilibrium. Rheological properties change during rétrogradation 

such as increased firmness and rigidity. Loss of water-holding capacity and restoration of 

crystallinity increase on aging of gelatinized starch. These processes exert a major and 

usually unacceptable influence on texture of foods rich in starch. Water content together 

with storage temperature are very important because they control the rate and extent of 

rétrogradation. Lipids and surfactants interfere with rétrogradation process. Amylose gel 

crystallization reaches a limit after 2 days (Miles et al. 1985b), whereas amylopectin gels 

increase slowly in crystallinity with time approaching a limit after 30-40 days (Ring et al. 

1987). Heating whole starch retrograded gels at 90°C reduced crystallinity by 70%, whereas 

amylose gel crystallinity was reduced by only 25% (Miles et al. 1985a) and amylopectin gels 

are fully reversible on heating (Ring 1985), indicating residual crystallinity of starch gels 

after heating is solely due to amylose fraction. Crystallinity of amylose fraction can be seen 

as an endothermic peak at 145-153°C (Eberstein et al. 1980, Sievert & Wiirsch 1993). 

Amylose reassociates very quickly after heating to 180°C, as an exothermic peak appears 

immediately after heating that is not observed for waxy starches (Sievert & Wiirsch 1993). 
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Gels with 75-90% amylose content resulted in high values for melting enthalpy 

(Gudmundsson & Eliasson 1990), resulting in possibility of cocrystallization in relation to 

rétrogradation (Russell 1987). Schierbaum et al. (1986) found that linear segments of 

amylopectin and amylose can interact in solution. 

Rétrogradation is greatly affected by storage temperature. Starch gels with 45-50% 

water at low temperature, but above Tg, increases rétrogradation compared to storage at room 

temperature. Storage at freezing temperatures virtually inhibits recrystallization (Colwell et 

al. 1969, Eliasson 1985). Higher temperatures (30-40°C) reduce rétrogradation (Colwell et 

al. 1969). Crystallites formed from storage at low temperature (4-5°C) are less perfect (have 

lower Tc) than crystallites formed at higher storage temperature (Gidley 1985, Nakazawa et 

al. 1985). 

A three-step mechanism for rétrogradation has been proposed consisting of initial 

nucleation (junction point of two or more molecules), followed by crystal 

growth/propagation and crystal perfection (Slade & Levine 1987). Within the range Tg-Tc, 

both nucleation and propagation exhibit an exponential dependence on temperature. 

Nucleation rate increases with decreasing temperature down to Tg, while propagation rate 

increases with increasing temperature up to Tc. This explains why crystallization occurs at 

low temperatures but only a limited degree at temperatures above 30°C. For longer storage 

periods, rétrogradation is maximal at a temperature midway between Tg and Tc, since 

nucleation and propagation are both at moderate rates. Both normal and waxy starch 

rétrogradation follow the proposed three-step mechanism as rétrogradation rate increased 

during 48 hours period with decreasing temperatures from 1-25°C, whereas amylose gels 
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stored at 6°C did not develop a staling endotherm (Biliaderis & Zawistowski 1990, Teo & 

Seow 1992, Wu & Eads 1993). 

Rétrogradation is sensitive to water content in starch gels. Crystallization during 

aging only occurs if starch concentration is between 10 and 80%, with maximum 

crystallization occurs at 50-55% starch concentration (Longton & LeGrys 1981, Eliasson 

1983, Zeleznak & Hoseney 1986, Teo & Seow 1992). Rétrogradation is only dependent on 

the amount of water present during aging and not on the amount of water present during 

gelatinization (Zeleznak & Hoseney 1986). Solutes, such as sugars, reduce rétrogradation of 

starch gels due to their anti-plasticizing effect compared to water alone (Slade & Levine 

1987), thereby reducing mobility of starch chains in the amorphous matrix by increasing Tg. 

Rétrogradation rate is greatly affected by botanical source of starch, which is not 

entirely due to differences in amylose contents (Orford et al. 1987, Kalichevsky et al. 1990, 

Gudmundsson & Eliasson 1991, 1992). There is some debate whether rétrogradation rate 

increases with higher amylose content, especially since amylopectin is considered 

responsible for long-term rétrogradation. The debate is largely due to observations that some 

waxy starches retrograde slowly, while pea and potato starches with high amylose content 

retrograde to a greater extent (Roulet et al. 1990, Chang & Liu 1991, Teo & Seow 1992). 

Starches from different botanical sources differ in their amylopectin branch chain-length 

distribution. For rétrogradation to occur, minimum chain-length requirement for aggregation 

is 8-10 glucose units and chains with less than 15 glucose units have been shown to not 

participate in crystallization (Robin et al. 1974, Gidley & Bulpin 1987, Ring et al. 1987). 

Short amylopectin chains (6-9 glucose units) have been shown to inhibit or retard 

rétrogradation (Kriisi von & Neukom 1984, Levine & Slade 1986). B-type starches, with 
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longer average branch chain-length distribution than A-type, on average have faster 

rétrogradation rates than A-type starches such as nonmutant cereal starches and chain-length 

has been attributed to this difference (Suzuki et al. 1985, Orford et al. 1987, Kalichevsky et 

al. 1990). 

Pasting Properties 

Heating of starch granules in excess water results in granule swelling and granules are 

disrupted if shear is applied. Starch pasting properties are frequently measured by studying 

viscosity changes during a programmed heating and cooling cycle. Brabender 

Viscoamylograph and Rapid Visco-Analyser are the typical instruments used to measure 

starch pasting properties. Changes in viscosity of starches during cooking give an indication 

of the stability during processing, while changes occurring during cooling may give an 

indication of the consistency of the final product. Starch paste is a viscous mass consisting 

of a continuous phase of solubilized amylose and/or amylopectin and a discontinuous phase 

of granule remnants. Pasting of granules occurs because as temperature of starch-water 

suspension increases, molecules within granule vibrate and rotate violently causing 

intermolecular hydrogen bonds to break and are replaced with hydrogen bonds to water 

molecules, producing more extensive hydration. Starch molecules become sheathed in layers 

of water molecules that plasticize them and allow them to move more freely. Granule 

become fragile as swelling increases and are easily broken by stirring, resulting in a decrease 

in viscosity. By time peak viscosity is reached, some granules have ruptured and fragmented 

due to shear forces. With continued stirring, more granules disintegrate, causing greater 

decrease in viscosity. Clarity of starch suspensions improves as granules swell and fragment. 
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Breakdown refers to the drop in viscosity of the starch paste at the end of the cooking with 

reference to the peak viscosity. On cooling, some starch molecules begin to reassociate, 

forming a precipitate or gel and an increase in paste opacity. This change in viscosity after 

cooling is referred to setback and is also measured in reference to peak viscosity, based on 

increase in viscosity from that at breakdown. 

Structure of starch is important in determining pasting properties. Low-amylose 

starches have been reported to have lower peak viscosity, breakdown and setback than 

starches with normal amylose contents (Noda et al. 2003). In contrast, reduced amylose 

content of durum wheat and rice has been reported to increase peak viscosity and breakdown 

(Sharma et al. 2002, Yasui et al. 2002). However, radiation-induced mutants of rice that had 

similar amylose contents to normal rice showed different pasting properties (Wu et al. 2002). 

Waxy cereal starches typically have higher peak viscosity than their normal counterparts 

(Jane et al. 1999, Abdel-Aal et al. 2002), but waxy potato has lower peak viscosity due to 

presence of phosphate monoesters (Jane et al. 1999). Starches with longer amylopectin 

branch chain-lengths have higher peak viscosity and lower pasting temperature (Franco et al. 

2002). Pasting properties have been shown to vary within different kernels of the same plant, 

with chalky rice kernels having higher peak and breakdown viscosity, but lower pasting 

temperature, setback and final viscosity compared to translucent kernels (Patindol & Wang 

2003). 

Various other factors can influence starch pasting properties. Pasting properties of 

corn starch have been shown to be influenced by maturity with starch from immature corn 

having higher peak and trough viscosities, and lower pasting temperature (Jennings et al. 

2002). Addition to starch of protein or free fatty acids alone inhibits formation of cooling 
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stage viscosity, but combination of all three results in prominent viscosity observed (Zhang 

& Hamaker 2003). Peak viscosity and breakdown decrease when starch is aged by storage at 

37°C for 16 months (Zhou et al. 2003). 

Tuber and root starches tend to have weaker intermolecular bonding and gelatinize 

easily to produce high-viscosity pastes that thin rapidly with moderate shear because their 

granules are highly swollen and break easily. Clarity of starch pastes differs greatly 

depending on botanical source. Craig et al. (1989) reported light transmittance of potato, 

tapioca, wheat, waxy com, com and high amylose com to be 96, 73, 62, 61, 41 and 5% 

respectively. Increasing starch concentration results in increased paste clarity (Bello-Pérez & 

Paredes-Lôpez 1996). Starches that possess phosphate monoesters typically produce a very 

clear viscous paste because repulsion between electronegative groups prevents starch 

molecules from hydrogen bonding to each other, collapsing, and ultimately retrograding 

(Craig et al. 1989, Lim & Seib 1993a, Liu et al. 2000, Sitohy & Ramadan 2001). Thus, 

phosphate monoesters help keep starch molecules fully hydrated, promoting light 

transmittance and decreasing whiteness of starch pastes. Absence of amylose in potato starch 

has been shown to improve paste clarity (Visser et al. 1998). Addition of sugars greatly 

increases paste clarity of cereal starches (Craig et al. 1989). Addition of fatty acids decreases 

paste clarity, with unsaturated fats reducing clarity the most due to their greater 

intermolecular interactions with starch (Swinkels 1985a, Craig et al. 1989, Bello-Pérez et al. 

1998). Modification of starch structure is regularly employed by industry to improve clarity 

of starch pastes (Rutenberg & Solarek 1984). Pasting properties of starches from various 

botanical sources is shown in Table 7. 
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Table 7. Pasting properties of starches from various botanical sources. Peak viscosity, final 
viscosity, breakdown and setback units are in Rapid Visco-Analyser Units (RVU) and 
pasting temperature units is °C. 

Starch Peak 
Viscosity 

Final 
Viscosity Breakdown Setback 

Pasting 
Temp. 

Acorn 1501 1961 171 631 

Amaranth 13919 10819 7319 4219 71.719 

Banana 25021 27221 562' 7821 74.021 

Barley cv. Glacier 7720 10620 612° 90.820 

Barley highAM 520 2320 2420 

Barl. hiAM hull-less ^20 1620 1820 

Barley cvWB.Merlin 22120 10220 3220 61.820 

Buckwheat 1601 1091 451 751 

Chinese taro 17121 16121 8321 7321 73.I21 

Ginger 205^ 1662 

22321 5421 67.421 Lotus root 30721 13821 22321 5421 67.421 

Maize, normal 31316 34416 12916 16116 74.116; 
82.021 

Maize, waxy 20521 10021 12121 1621 69.521 

Maize cv. A632 19614 28114 69'4 15414 

Maize cv. A632 du 10014 77I4 3914 1714 

Maize cv. A632 su2 1314 1414 014 I14 

Maize ae wx 16221 19021 1221 4021 83.22' 
Maize cv. B73 1714 2134 594 1004 

Maize du wx 10921 9921 32%i 222' 75.721 

Maize cv. Hz85 16214 22014 4514 10214 

Maize cv. Hz85 du 6414 4114 35'4 1214 

Maize cv. Hz85 su2 26'4 3914 014 314 

Maize cv. Oh43 12914 16514 4014 7614 

Maize cv. Oh43 du 12814 85'4 7114 2814 

Maize cv. Oh43 su2 4514 4814 314 614 

Millet, cattail 20121 20821 12121 12821 74.221 

Mungbean 1621; 18621 2031; 36321 201; 2521 621; 20221 73.821 
Potato 1062; 282- 238-2742; 2 1 7-3 3021 62.7-

42521 116-16121 66.421 

Quinoa 34619 41619 7519 14519 66.819 

Rice, commercial 2329; 11321 16021 1721; 879 6421; 1059 79.921 

Rice, sweet 21921 12821 11921 282' 64.621 

Rice, waxy 20521 10021 12121 1621 64.121 

Rice cv. Cypress 24015 24515 11215 11515 

Rice cv. Dellrose 2463 1303 -153 

Rice cv. Hokuriku 1605 1415 965 if 80.65 

Rice cv. IR5 969 28^ 
Rice cv. IR28 1439 30^ 1069 

Rice cv. IR32 1289 489 629 
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Table 7. (continued) 
Starch Peak 

Viscosity 
Final 

Viscosity 
Breakdown Setback 

Pasting 
Temp. 

Rice cv. IR36 269" 83" 69" 
Rice cv. Jasmine 2603 1403 -423 

Rice cv. Jodon 1373 583 363 

Rice cv. Mars 2573 1313 -323 

Rice cv MilkyQueen 203^ 145s 85s 27s 94.65 

Rice cv. Nipponbare 1665 1425 96s 72s 85.7s 

Rice cv. Rexmont 2513 973 923 

Rice cv. Snow Pearl 2445 122s 1495 275 77.5s 

Rice cv. Tainung 52012 47412 19012 24412 

Rice cv. T(N)1 61612 632'^ 30612 322^ 
Rice cv. Toro 2763 1583 -143 

Rice cv. Yumetoiro 1185 155s 21s 58s 93.3s 

Sago 72.5-7417 

Sorghum 50% 572 

89.2" Sorghum cv. Kasvik. 314" 197" 130" 89.2" 
Sorghum cv. Katand. 319" 203" 1218 84.9" 
Sorghum cv. Mukad. 307" 204" 118" 89.2" 
Sorghum cv. Mutode 339" 220" 123" 83.4" 
Sweetpotato Kanto 52.6'" 
Sweetpotato Kogan. 70.7'" 
Sweetpotato Kyushu 

1302; 17321 10721; 1262 11221 4621 
73.6'" 

Tapioca 1302; 17321 10721; 1262 11221 4621 67.621 

Tef 26916 292'* 79'* 10116 74.016 

Water chestnut 6121 27 21 4521 ll21 74.321 

Wheat, commercial 2677 4037 437 1797 88.621 

Wheat, A-granules 3417 4357 1477 2417 

Wheat, B-granules 1937 2957 637 1657 

Wheat cv Chikugoiz. 33013 53" 116" 68.9" 
Wheat cv. Condor 1036 167* 8* 71* 
Wheat cv. Fillmore 42211 355" 216" 149" 
Wheat cv. Freedom 396" 406" 175" 185" 
Wheat cv. Geneva 394" 433" 181" 220" 
Wheat cv. Insignia 230* 281* 63* 113* 
Wheat cv. Meeting 19810 27310 2110 7810 

Wheat cv Nishihona. 33813 5513 139" 79.9" 
Wheat cv. Norin 30713 61" 122" 82.8" 
Wheat cv. Pioneer 421" 445" 173" 197" 
Wheat cv. Ro sella 197*; 27810 279*; 32110 30*; 5010 9010; 112* 
Wheat cv. Saikai 326" 52" 124" 80.8" 
1 = Cho & Kim (2000), 2 = Blennow et al. (2001), 3 = Shu et al. (1998), 4 = Yamin et al. (1999), 5 = Kuno et al. (2000), 6 = Wootton et al. 
(1998), 7 = Shinde et al. (2003), 8 = Beta & Corke (2001), 9 = Bhattacharya et al. (1999), 10 = Black et al. (2000), 11 = Gaines et al. 
(2000), 12 = Lai (2001), 13 = Noda et al. (2001), 14 = Li & Corke (1999), 15 = Wang et al. (2002), 16 = Bullosa et al. (2002), 17 = Ahmad 
et al. (1999), 18 = Katayama et al. (2002), 19 = Qian & Kuhn (1999a), 20 = Song & Jane (2000), 21 = Jane et al. (1999) 
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Fruit Starches 

Numerous types of fruit accumulate starch during development. However, because 

few fruit have high levels of starch when consumed, characterization of starches in fruit has 

received little attention. Of all fruit starches, banana starch has received the most attention. 

Scanning electron micrographs have shown banana starch granules are long, large, 

irregularly-shaped, smooth granules that have some resemblance to banana fruit shape (Fuwa 

et al. 1979, Jane et al. 1994). Green banana starch exhibits C-type X-ray diffraction pattern, 

has onset gelatinization temperature of 68.6°C, narrow gelatinization temperature range of 

7.5°C, enthalpy change of gelatinization of 17.2 J/g, pasting temperature of 74°C, peak 

viscosity of 250 rapid viscoanlyser units (RVU), final viscosity of 272 RVU, setback of 78 

RYU and average amylopectin branch chain-length of DP 26.4 (Jane et al. 1997, 1999). 

Kiwifruit starch was reported to have mixture of polyhedral and dome-shaped 

granules that were predominantly 6-8 |im (Sugimoto et al. 1988). Kiwifruit starch exhibited 

B-type X-ray diffraction pattern, apparent amylose content of 15-18% and onset 

gelatinization temperature of 62-63°C. Apple starch characteristics have been researched, 

but carbohydrate analytical techniques have advanced considerably since (Potter et al. 1949). 

Apple starch was reported to have 25-27% apparent amylose content. Degradation of apple 

amylose with (3-amylase yielded 90% maltose, whereas amylopectin hydrolysis ceased when 

63.5% was degraded to maltose. Average apple amylose and amylopectin molecule were 

determined to consist of 560 and 4,200 glucose residues, respectively, corresponding to an 

amylopectin molecular weight of 1.2 x 106. Average apple amylopectin branch chain-length 

was determined to be DP 24. 
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Squash Fruit Starches 

In the last 25 years, just three studies, the first ever, have emerged characterizing starch from 

fruit of any squash, pumpkin, melon, gourd, cucumber or zucchini from the Cucurbitaceae 

plant family. One study characterized starch from Cucurbita squash cultivars grown in 

Moldavia (Kakhana & Ludnikova 1981). Their study found Moldavia Spanish squash 

cultivar accumulated 12% of its fresh weight as starch. Moldavia Spanish cultivar starch 

granules were reported to be spherical and not compound, with a diameter ranging from 7 to 

20 gm, and half of the granules with diameters 9 to 12 jam. Apparent amylose content was 

21% and ashed starch was reported to contain 0.085% phosphorus. During 3 hour 

degradation at 35°C, one gram of squash starch was hydrolyzed to 383 mg and 213 mg of 

glucose by a- and ^-amylase, respectively. 

Two studies reported starch characteristics of two winter squash cultivars, a buttercup 

squash Ebisu, and a butternut squash, Kogiku, during development up to horticultural 

maturity (Sugimoto et al. 1998a), and the starch characteristics of Kogiku during storage 

(Sugimoto et al. 1998b). Average starch granular size of Ebisu and Kogiku was 6.5 to 8.0 

jam at harvest for both cultivars. X-ray diffraction studies showed both squash starches had 

B-type pattern. Apparent amylose content of Ebisu and Kogiku at harvest was 21-22% and 

17%, respectively. Onset gelatinization temperature of Ebisu and Kogiku starches from fruit 

at harvest was 62.1°C and 62.6°C, respectively, and enthalpy change of gelatinization was 

about 14 J/g for both. Peak viscosity, breakdown and final viscosity, in Brabender units, was 

810, 460 and 590 respectively for Ebisu starch at harvest, and 735, 445 and 495, respectively, 

for Kogiku starch at harvest. Storage of Kogiku fruit for 1-2 months at room temperature 
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resulted in greater decrease in starch content than storage at 5°C. Amylose contents of the 

starches increased during storage. Starch granules suffered enzymic attack during fruit 

storage and extracted starch was more susceptible to hog pancreatin than starches extracted 

from fruit during development. 

FOOD TEXTURE MEASUREMENTS 

Texture Profile Analysis 

Texture Profile Analysis (TPA) is an imitative test utilized by many food 

technologists because of its ability to provide standardized tests which are difficult to achieve 

when using human subjects. TP A was developed at General Foods in 1960s (Szczesniak et 

al. 1963). The first TP A that did not involve sensory panelists used a force-deformation 

instrument called the General Foods Texturometer (Rosenthal 1999). In the present day, an 

Instron Universal Testing Machine or TAXT2 texture analyser is commonly employed. 

Szczesniak et al. (1963) established a variety of textural terms using sensory panels and later 

a two-cycle compression test was developed, attempting to simulate the textural attributes 

perceived by human subjects. A diagram representing the parameters that are measured 

instrumentally by TP A is shown in Fig. 6 (Szczesniak et al. 1963). Hardness is calculated 

from the height of the "first bite", or compression curve (Ai). Fracturability (brittleness) is 

the force that material fractures significantly on first bite. Springiness (elasticity) is defined 

as the distance that the food recovered its height during the time that elapsed between the end 

of the first bite and the start of the second bite (BC). The ratio of the positive force areas 

under the first and second compression (A2/A1) is defined as cohesiveness. Adhesiveness is 

defined as the negative force area of the first bite (A3), representing the work required to pull 
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compression probe away from sample. Gumminess and chewiness are derived by calculating 

the measured textural parameters. Gumminess is the product of hardness x cohesiveness, and 

chewiness is the product of gumminess x springiness. 

FgACTUAAaUfTr HARDNESS 

4 

7 I M  £  

Figure 6. A typical Texture Profile Analysis curve using the Instron Universal Testing 
Machine. 

Texture of Squash Fruit 

Texture of squash fruit has been investigated utilizing sensory panels. Sensory 

attributes of three buttercup cultivars grown in New Zealand were investigated, with a 

development hybrid, rated by sensory panelists to have more desirable dry, mealy texture 

than the cultivars Delica and Kaboten (Hurst et al. 1995). Tropical pumpkin fruit flesh was 

found to range in texture from fine, pasty, smooth, silky mouth feel to watery, fibrous and 

stringy (Daniel et al. 1995). Non-buttercup squash had more acceptable texture than 

buttercup squash soon after harvest, but as storage progressed, buttercup squash texture was 

rated more favorably by sensory panelists (Merrow & Hopp 1961). The most thorough 

textural analysis of squash utilizing a sensory panel was carried out by Corrigan et al. (2001) 

and Cumarasamy et al. (2002). In their studies, high-starch buttercup squash cultivars were 
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found to have higher brittleness and cohesiveness than low-starch squash cultivars. High-

starch cultivars had significantly smaller particle size mouth feel, and were significantly 

drier, crumblier, harder, more gummy, more adhesive and had fewer fibers compared to low-

starch cultivars. 

In addition to sensory panels, Instron and other instrumental compression tests have 

been used to determine mechanical properties of squash fruit. These data have been related 

to textural attributes perceived by human senses. The first study to implement use of the 

Instron Universal Testing Machine studied 'Dixie" hybrid summer squash and fruit hardness, 

brittleness, gumminess, chewiness, cohesiveness and elasticity all increased during storage, 

although storage was only a maximum of nine days (Smittle et al. 1980). Firmness of raw 

'Delica' buttercup squash at harvest was reported to be 70-80 N by two studies (Harvey et al. 

1997, Ratnayake et al. 1999). Firmness of uncooked and cooked buttercup squash showed 

similar patterns of change over storage with decreasing fracturability, hardness and 

gumminess, and similar springiness, chewiness and cohesiveness during storage (Ratnayake 

et al. 1999). Cooked buttercup squash has been reported to exhibit an abrupt failure of fruit 

samples when compression is applied (Corrigan et al. 2001). Differences were observed 

between squash cultivars for hardness, springiness, cohesiveness and gumminess of cooked 

fruit (Corrigan et al. 2001, Cumarasamy et al. 2002). 

Role of Starch in Texture of Squash Fruit 

Differences observed in textural attributes of raw and cooked squash fruit had led researchers 

to investigate the determinants of texture. The earliest study to propose that starch may play 

a role in texture of squash observed total solids and acid-hydrolyzable polysaccharides were 
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higher in cooked squash that was more viscous and had drier texture (Culpepper & Moon 

1945). Study of six winter squash cultivars during storage found no distinction between 

cultivars until 10 weeks storage, where textural attributes varied due to differences in sugar 

to starch ratio (Merrow & Hopp 1961). In a separate study, a sensory panel's preferences for 

cooked squash were positively correlated to starch (r = 0.94) and negatively correlated to 

pectin, hemicellulose and cellulose content (Smittle et al. 1980). Positive correlations were 

observed between starch content and smoothness or pastiness of cooked tropical pumpkin 

fruit (Daniel et al. 1995). Squash with significantly higher starch content have been reported 

to have significantly drier texture (Hurst et al. 1995). 

In most recent studies, significant correlations were observed between starch content 

of squash fruit, and all textural attributes rated by sensory panelists (Corrigan et al. 2001, 

Cumarasamy et al. 2002). Mouthfeel-type correlations, such as adhesiveness, particle size, 

mouthfeel, moistness and fibrousness, were higher than correlations involving mechanical 

parameters such as hardness, brittleness and cohesiveness. Similar to a study by Hurst et al. 

(1995), starch content was negatively correlated to the sensory parameter, moistness of 

squash fruit which has previously been proposed to be caused by partially hydrolyzed starch 

molecules (Szczesniak & Ilker 1988). 

Squash Texture and Cell Wall Polysaccharides 

Only two studies have investigated the role of cell wall polysaccharides in the texture of raw 

and cooked squash fruit. In the first study, sensory panelists squash texture preferences were 

negatively correlated to water-soluble pectin, Calgon-soluble pectin (which indicate low-

methoxyl pectinates), hemicellulose and cellulose, but were positively correlated to 
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protopectin content (Smittle et al. 1980). In the second study, cell walls of buttercup squash 

were found to be composed of 34% pectin, 26% hemicelluloses, and 39% cellulose on a dry 

weight basis (Ratnayake et al. 1999). Unfortunately subsequent studies opted to publish 

research on squash textural attributes and cell wall polysaccharides in separate papers with 

no attempt made to correlate the two factors (Ratnayake 2000, Ratnayake et al. 2003). 

However, one can educe from these studies that total cell wall yields were found to be 

unaltered after 2 months storage, but then decrease for some squash cultivars after 3 months 

storage. Textural analysis showed parallel changes in failure force, failure strain and 

deformation of raw squash fruit to that observed for cell wall yields. However not all 

textural attributes correlated well with changes in cell wall yields as some cultivars showed 

significant decreases in modulus of deformability and failure stress at early storage times 

when no changes in cell wall yields were observed. 

Starch Content and Texture 

Endogenous starch content has been implicated in the texture of many foods. Starch 

content has been reported to contribute to both harder cooked grain texture (Lee et al. 2001) 

and softer cooked plantain texture (Qi et al. 2000). Stickiness and gumminess of potatoes 

was found to be related to the amount of starch that exudes from ruptured cells (Reeve 1977). 

Mealiness textural attribute has often been linked to starch content and the behavior 

of starch within cells. Non-cooked potatoes have been observed to fracture through cells 

leaving starch granules intact, whereas cooked potatoes fracture between cells preferentially 

alongside the cell walls (Marie van et al. 1992). Firm-cooking potato cultivars had fracture 

planes with a generally flat appearance and large intercellular contacts were visible. Mealy 
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potato cultivars have rougher fracture planes and intercellular contacts were small (Marie van 

et al. 1992). Mealiness of potatoes has been linked to higher starch content (Sweetman 1936, 

Wright et al. 1936, Haddock & Blood 1939, Clark et al. 1940, Smith & Nash 1940, 

Kirkpatrick 1953, Bettelheim & Sterling 1955, Shewfelt et al. 1955, Unrau & Nylund 1957, 

Reeve 1977, Sterling & Aldridge 1977, Marie van et al. 1992, McComber et al. 1994). 

Mealy potatoes form a starch gel, which will be rigid if the starch concentration exceeds 30% 

(Ring 1985), resulting in round cells with more turgid appearance due to high starch swelling 

pressure (Jarvis et al. 1992) and more resistance to forces exerted during fracturing (Marie 

van et al. 1992). Differences in behavior of various starches during heating have been 

proposed to be more significant to the texture of cooked potatoes than differences in the 

amounts of starch (Mica & Brod 1985, McComber et al. 1994). Cooked potatoes with higher 

mealiness scores have lower compression forces and greater amount of starch leached (Kaur 

et al. 2002). 

Mealy potatoes have been reported to have cells engorged with sponge-like 

gelatinized starch and little void space between cell wall and gelatinized starch (Marie van et 

al. 1992). However, other studies found all cultivars of potatoes have cells not completely 

engorged with gelatinized starch (Moledina et al. 1978, Huang et al. 1990) and it was 

speculated that microscopy techniques resulted in shrinkage of gelatinized starch. The lack 

of complete cell engorgement of gelatinized starch was also observed by McComber et al. 

(1994) who found striking differences in the amount of gelatinized starch filling the cells of 

cooked potatoes from different cultivars. Mealy potatoes were completely engorged with 

gelatinized starch whereas waxy potatoes only have 30-50% of cells filled. Gelatinized 

starch filling each mealy cell better retains water, providing the dry characteristic. Steamed 
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sweet potatoes produce a coarser structure of gelatinized starch than when boiled (Valetudie 

et al. 1999). 

Moisture content has been found to be critical in influencing the role of starch in 

texture. In corn, a minimum moisture content of 35% was found to be necessary for 

gelatinization of starch (Cabrera et al. 1984) and high-moisture vegetables, such as taro with 

87% water, had no lag phase for onset of gelatinization (Njintang & Mbofung 2003). 

Protein content can interact with starch to influence texture. Softer-textured wheats 

were found to have larger starch granules than harder-textured wheats (Black et al. 2000). 

Smaller granules had larger surface area available for noncovalent bonding with the 

endosperm protein matrix and may also pack more efficiently, producing harder endosperm 

(Glenn et al. 1992, Bechtel et al. 1993, Zayas et al. 1994, Bechtel & Wilson 1997, Gaines et 

al. 2000). Therefore, surface properties of starch granules might be more important than 

components within granule in determining grain hardness. Additionally, starch granule 

surface has been found to contribute to elastic and sticky texture of pasta (Cunin et al. 1995). 

More protein in grain has been hypothesized to form a thicker barrier around starch granules, 

thus slowing water uptake (Juliano et al. 1965, Chakrabarthy et al. 1972, Yanase et al. 1984), 

resulting in slower gelatinization and retarding swelling of granules, thus leading to more 

water lost as steam during cooking. Two friabilin components, puroindoline a and b have 

been found to affect wheat grain texture with the former contributing to soft texture and the 

latter contributing to harder texture (Corona et al. 2001). Absence of granule-bound starch 

synthase protein of wheat produces udon noodles of superior soft-textured quality (Briney et 

al. 1998). 
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Amylose and Texture 

Amylose content has been reported to contribute to hard texture of rice (Kurasawa et 

al. 1969, Manohar Kumar et al. 1976, Lorenz et al. 1978, Perez & Juliano 1979, Bhattacharya 

et al. 1982, Desphande & Bhattacharya 1982, Sandhya Rani & Bhattacharya 1985, 

Sowbhagya et al. 1987, Sandhya Rani & Bhattacharya 1989a, Ong & Blanshard 1995a, 

1995b, Kohyama et al. 1998, Takahashi et al. 1998, Bhattacharya et al. 1999, Champagne et 

al. 1999, Ramesh et al. 1999a, Qi et al. 2000, Ramesh et al. 2000, Takahashi et al. 2000), 

rice-based fries (Kadan et al. 1997), wheat (Black et al. 2000, Noda et al. 2001) and wheat 

gels (Gaines et al. 2000). However, there have been a few studies that report softer texture 

with increasing amylose content in rice (Sowbhagya et al. 1991, Lai 2001) and kernels of 

wheat (Gaines et al. 2000). A mechanism for how amylose contributes hardness to foods 

was shown by Mestres et al. (1988), who showed for rice that amylose crystallites, when 

gluten was absent, helped create a continuous network by strongly linking to one another by 

junction zones. However, this finding does not explain how amylose contributes to hardness 

of wheat grains observed for some studies (Black et al. 2000, Noda et al. 2001). Hardness 

measured by Instron, but not by sensory panels, was found to be positively correlated to 

molecular weight of amylose (Ong & Blanshard 1995b). 

Stickiness of foods has often been linked to low amylose content (Bhattacharya & 

Sowbhagya 1979, Bhattacharya et al. 1982, Sandhya Rani & Bhattacharya 1985, 

Unnikrishnan & Bhattacharya 1987, Sowbhagya et al. 1991, Windham et al. 1997, Perdon et 

al. 1999, Rousset et al. 1999, Takahashi et al. 2000). However, other studies found stickiness 

was associated with higher amylose contents (Sowbhagya et al. 1987, Ong & Blanshard 
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1995a, Kohyama et al. 1998). Stickiness of cooked rice can be enhanced by protease 

removal of albumins and globulins from grain (Watanabe 1993). 

Rice with higher amylose content has been reported to have greater chewiness 

(Bhattacharya et al. 1999, Kang & Han 2001). Masticatory behavior of rice with different 

amylose contents was evaluated using electromyography of masticatory muscles (Kohyama 

et al. 1998). Masticatory behavior was more related to adhesiveness and stickiness of rice 

than to the hardness. Number of chews and masticatory time, total duration of mastication 

and total muscle activities were greater in cooked rice with a high amylose content, which 

showed low adhesiveness and stickiness. Cooked rice with a high amylose content was 

masticated with high masseter muscle activities. Ratio of jaw-opening muscle activity to the 

preceding jaw-closing muscle activity was low in high-amylose varieties, which 

corresponded to the ratio of stickiness to hardness using texturometer. 

Gumminess has also been associated with amylose content. High gumminess was 

correlated with high amylose content (Kadan et al. 1997, Bhattacharya et al. 1999), while 

another study reported the opposite relationship (Lai 2001). Elasticity in foods has been 

shown to be negatively correlated to amylose content (Sowbhagya et al. 1987, Akashi et al. 

1999, Noda et al. 2001). Other textural parameters positively correlated to amylose content 

include adhesiveness (Windham et al. 1997, Takahashi et al. 2000), flakiness (Bhattacharya 

et al. 1982), tensile strength (Bhattacharya et al. 1999) and cohesiveness of mass 

(Champagne et al. 1999), and negatively correlated to smoothness (Noda et al. 2001). 

A correlation has been established between intercellular adhesion and amylose 

content (Linehan & Hughes 1969). During cooking, amylose leaches out through weakened 

cell walls and acts as a cementing material between the cell walls, leading to increased 
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intercellular adhesion. A positive correlation between hardness or stickiness of rice and the 

amount of leached amylose has been observed (Ong & Blanshard 1995b). 

Amylopectin and Texture 

During the last 25 years, hot-water insoluble amylose content has been propounded as 

the key determinant of varietal differences in the texture of cooked rice (Bhattacharya & 

Sowbhagya 1979, Sandhya Rani & Bhattacharya 1985, Sowbhagya et al. 1987, Unnikrishnan 

& Bhattacharya 1995), only to be later discovered to in fact be long-chain amylopectins 

rather than amylose (Ramesh et al. 1999a). Soluble amylose content showed no relationship 

to rice texture, indicating amylose plays little role in texture (Reddy et al. 1993). Long-chain 

amylopectin has been reported to be correlated to hardness (Reddy et al. 1993, Takahashi 

1993, Ong & Blanshard 1995a, 1995b, Ramesh et al. 1999a, Takahashi et al. 2000). 

Specifically, Ong & Blanshard (1995a, 1995b) report hardness is positively correlated to the 

proportion of amylopectin branch chain-lengths of DP 92-98 and negatively correlated to DP 

10-11, 18 and 22-25. Hizukuri et al. (1989) had previously reported viscosity of rice was 

affected especially by relative proportion of longest B-chain amylopectin branches (DP 70-

90), and shortest A-chains (DP 15-17), despite the former chains being present in small 

concentrations. The longest amylopectin chains (DP 92-98) were not found in leached 

starches, and could interact with other components in rice, with the resultant complexes 

being retained in cooked grain and inhibit softening (Ong & Blanshard 1995b). 

Rheological and microscopic studies (Sandhya Rani & Bhattacharya 1985, 1989a, 

1995) and studies on viscoelastic properties of rice (Reddy et al. 1994) have provided some 

indication of how amylopectin structure affects hardness of rice. High long-chain 
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amylopectin rice is rigid with elastic properties and strong starch granules which resist 

swelling as well as disintegration when heated under shear (Reddy et al. 1993). Short-chain 

amylopectin has weak, deformable and fragile starch granules that swell and tend to 

breakdown easily under heat and shear. The proportion and relative external disposition of 

long B-chains of rice amylopectin was related positively to both strength of granule and 

hardness of cooked rice. Rice texture has been correlated not only to long amylopectin B-

chain content, but also to long chains of entire starch, therefore proposing that amylose 

participated in intermolecular interactions affecting rigidity of granule and indirectly the 

texture of rice (Takeda et al. 1989b, Ramesh et al. 1999a). Since amylopectin component is 

the primary contributor to starch crystallinity (Hizukuri et al. 1983, French 1984, Hizukuri 

1985, Eliasson et al. 1987, Zobel 1988), a greater content and more external disposition of 

long B-chains of long-chain amylopectin could make starch granules strong and rigid through 

intermolecular interactions (Reddy et al 1993). Paucity of long and external chains in short-

chain amylopectin would be expected to render its starch granules weak and fragile due to a 

low degree of intermolecular interlocking. Rigid and strong starch granules in turn would be 

expected to render cooked rice hard, non-sticky and dry, because starch would not leach out 

of intact granules. Conversely, fragile granules would tend to disintegrate on cooking, 

rendering cooked rice soft, sticky and moist. 

Wheat starch digested by a-amylase produced good textured noodles when a small 

proportion of oligosaccharides with DP 5 or greater were present, while wheat starch 

producing poor textured noodles had much greater amounts of these larger oligosaccharides 

(Batey et al. 1997). Because oligosaccharides of greater than DP 4 have at least one branch 
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point, a-amylase digestion studies indicate an amylopectin structure with relatively few 

branch points close together provides good noodle texture. 

Stickiness has been both positively (Ong & Blanshard 1995a) and negatively (Takeda 

et al. 1989b, Takahashi et al. 2000) correlated with long-chain amylopectin branches, 

positively correlated to intermediate branch chain-lengths (DP 26-30) (Aboubacar & 

Hamaker 2000), negatively correlated to short-chain amylopectin branches (Takahashi et al. 

2000), and positively correlated to ratio of short to long amylopectin branch chains 

(Takahashi et al. 2000). 

Starch Thermal Properties and Texture 

Higher onset gelatinization temperature (To), which can often result in a low degree 

of starch gelatinization in cooked grains, has been reported to maintain hardness (McComber 

et al. 1988, Arai & Watanabe 1994, Zeng et al. 1997). Shear stress of cooked sweet potato 

has also been correlated to T0 (Walter et al. 2000). In potatoes, mealy texture has been 

shown to result from lower gelatinization temperatures, higher gelatinization temperature 

range, higher enthalpy change of gelatinization (AH) and higher rétrogradation rate 

(McComber et al. 1988, McComber et al. 1994, Kaur et al. 2002). Peak gelatinization 

temperature has been reported to be positively correlated to softness of white-salted wheat 

noodles and elasticity of sorghum noodles (Beta & Corke 2001, Noda et al. 2001). 

Hardness of rice was found to be positively correlated to AH (Ong & Blanshard 

1995b), and white-salted noodle hardness was positively correlated to AH of amylose-lipid 

complex (Noda et al. 2001). Decreased elasticity and smoothness of the noodles was also 

reported for higher AH of amylose-lipid complex. Starch rétrogradation has been shown to 
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be correlated to firmness of rice, but its relationship with stickiness was dependent on 

cultivar and storage temperature (Perdon et al. 1999). Sticky rice has been observed to have 

a well-developed network of gelatinized starch covering the surface of every grain (Matsuda 

et al. 1989). There has been some speculation that the rétrogradation behavior of starch 

within whole plant tissue may differ from the purified form (McComber et al. 1994), but 

recently rétrogradation of rice starch was observed to be similar in both purified and cooked 

grain form (Yao et al. 2002). 

Starch Pasting Properties and Texture 

Hardness has been correlated positively to setback (Yun et al. 1997, Limpisut & 

Jindal 2002), final viscosity (Yun et al. 1997, Noda et al. 2001, Limpisut & Jindal 2002), 

pasting temperature (Ong & Blanshard 1995b, Collado & Corke 1997, Limpisut & Jindal 

2002) and negatively correlated to peak viscosity (Moss 1980, Endo et al. 1988, Ebata & 

Hirasawa 1989, Crosbie 1991, Crosbie et al. 1992, Baik et al. 1994, Limpisut & Jindal 2002) 

and breakdown (Oda et al. 1980, Baik et al. 1994, Sandhya Rani & Bhattacharya 1995, 

Champagne et al. 1999, Ramesh et al. 1999b, Limpisut & Jindal 2002). Inverse relationship 

between peak viscosity and hardness may be due to amylose-lipid complex, which has been 

shown to harden grain surface and lower viscosity (Yamada et al. 1995). Springiness has 

been reported to be correlated positively to peak viscosity (Akashi et al. 1999, Beta & Corke 

2001, Noda et al. 2001), final viscosity (Yun et al. 1997, Beta & Corke 2001, Limpisut & 

Jindal 2002), setback (Ong & Blanshard 1995b, Yun et al. 1997, Limpisut & Jindal 2002) 

and correlated negatively to breakdown (Limpisut & Jindal 2002, Bhattacharya et al. 1999). 

Adhesiveness was reported to be negatively related to pasting temperature, setback and final 
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viscosity, and positively related to peak viscosity and breakdown, with the complete opposite 

relationships reported for cohesiveness (Limpisut & Jindal 2002), although Collado & Corke 

(1997) did report a positive relationship between pasting temperature and adhesiveness. 

Cohesiveness was correlated positively to pasting temperature, final viscosity and setback 

(Champagne et al. 1999, Limpisut & Jindal 2002) and negatively correlated to breakdown 

(Limpisut & Jindal 2002). Other textural parameters reported to be related to starch pasting 

properties are smoothness (Noda et al. 2001), stickiness (Juliano et al. 1964, El-Saied et al. 

1979), slickness and cohesiveness of mass (Champagne et al. 1999). 

Breakdown of starch paste is considered a fundamental attribute of rice textural 

quality. Starch granules of high-amylose rice are more rigid and better reinforced so they 

resist disintegration and hence result in a stable paste, while granules of low-amylose rice are 

more fragile and susceptible to disintegration, resulting in an unstable paste (Sandhya Rani & 

Bhattacharya 1995). Therefore, the amount and structure of amylose may be responsible for 

granule strength, and granular rigidity/fragility may be the root cause of differences in eating 

quality of rice. 

Amylose Effect on Pasting Properties 

Peak viscosity and breakdown of starch pastes has been reported to be negatively 

correlated to amylose content by many researchers (Sandhya Rani & Bhattacharya 1989b, 

Kusutani et al. 1992, Wang et al. 1993b, Reddy et al. 1994, Sandhya Rani & Bhattacharya 

1995, Kitahara et al. 1996, Matsue 1996, Collado & Corke 1997, Yoshii et al. 1997, Zeng et 

al. 1997, Ogata & Matsue 1998, Bhattacharya et al. 1999, Jane et al. 1999, Aboubacar & 

Hamaker 2000, Araki et al. 2000, Collado et al. 2000, Kuno et al. 2000, Song & Jane 2000, 
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Aslam-Sagar et al. 2001, Beta & Corke 2001, Blennow et al. 2001, Li et al. 2001). However, 

Sandhya Rani & Bhattacharya (1985) and Taylor et al. (1997) reported higher peak viscosity 

with higher amylose content. The explanation for this discrepancy is that low-amylose rice 

starch heated at 60°C, 75 °C, and 95 °C with less than 7% starch concentration, has higher 

paste viscosity than high-amylose rice but at 95°C and greater than 7% starch concentration, 

high-amylose rice has higher paste viscosity (Sandhya Rani & Bhattacharya 1989b). This 

also explains why A-type wheat starch granules that have higher amylose content (Kulp 

1973, Meredith 1981, Soulaka & Morrison 1985, Peng et al. 1999) are positively correlated 

to pasting attributes (Shinde et al. 2003). Additionally, amylose chain-length could explain 

discrepancies since peak viscosity has been reported to be positively correlated to amylose 

chain-length (Shibanuma et al. 1996). Pasting temperature has been reported to be positively 

correlated (Li et al. 2001, Noda et al. 2001) and negatively correlated (Seetharaman et al. 

2001) to amylose content. Setback and final viscosity are positively correlated to amylose 

content (Taylor et al. 1997, Sasaki et al. 2000). 

Amylose Effect on Thermal Properties 

Several researchers have previously reported higher apparent amylose content to be 

correlated to lower T0 (Inouchi et al 1993, Visser et al. 1997, Demeke et al. 1999). However, 

other researchers have reported a positive relationship between T0 and apparent amylose 

content (Asaoka et al. 1994, Wang & White 1994b) and many report no relationship between 

apparent amylose content and all gelatinization temperatures and enthalpy changes (Noda et 

al. 1993, Kim et al. 1995, Moorthy et al. 1996, Mun et al. 1998, Noda et al. 1998, Wootton et 

al. 1998, Nakamura et al. 2002). Since apparent amylose measurement includes iodine 
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affinity of amylopectin fraction, long-chain amylopectins may play a critical role in thermal 

properties of starches and explain the discrepancies found in literature for the influence of 

amylose content on starch thermal properties. A negative correlation has been reported 

between AH and apparent amylose content (Kosson et al. 1994, Fujita et al. 1996, 

Czuchajowska et al. 1998,1999, Sasaki et al 2000), but a positive relationship between AH 

of amylose-lipid complex and apparent amylose (Villwock et al. 1999). 

Amylopectin Effect on Pasting Properties 

Short amylopectin branch chain-lengths proportion (DP 6-12) of wheat starch has 

been shown to be positively correlated to setback and pasting temperature (Noda et al. 2001), 

while long amylopectin branch chains have been positively correlated to peak viscosity 

(Shibanuma et al. 1996). However, for hull-less barley starch, no relationship was observed 

for short-chain amylopectins, but intermediate amylopectin branch chain-lengths (DP 18-34) 

were positively correlated to peak viscosity and breakdown (Li et al. 2001). Long chains of 

rice amylopectin have been reported to be negatively correlated to breakdown, while short 

amylopectin chains were positively correlated (Han & Hamaker 2001). Frequency ratio of 

short A-chains to intermediate glucose chains (B-chains), and the ratio of B-chains to long C-

chains, and the relative frequencies of A- or B-chains were found to be closely associated 

with breakdown and setback of rice starch pastes (Choi et al. 1999). Corn starches with short 

amylopectin branch chain-lengths were reported to have high pasting temperature, and low 

peak viscosity and breakdown (Mua & Jackson 1997). 

Amylopectin Effect on Thermal Properties 



www.manaraa.com

79 

Proportion of short amylopectin branch chain-lengths (DP 6-12) has been shown to be 

negatively correlated to Tp, AH and AH of amylose-lipid complex (Noda et al. 2001). 

However, another study has shown short amylopectin branch chains (DP 5-17) are positively 

correlated to T0 and negatively correlated to range of gelatinization temperature, and vice 

versa for long amylopectin branch chain-lengths (DP >35) and the average amylopectin 

branch chain-length (Li et al. 2001). Intermediate amylopectin branch chain-lengths (DP 18-

34) are positively correlated to Tp and Tc. Ji et al. (2003) reports com starches with a lower 

onset gelatinization temperature had lower degree of intermediate amylopectin branch chain-

lengths (DP 15-24) and a higher degree of short amylopectin branch chain-lengths (DP 6-12). 

Increasing AH with increasing amylopectin chain-length has also been observed (Tang et al. 

2001). Jane et al. (1999) studied starches from 21 different botanical sources, finding 

starches with short average amylopectin branch chain-lengths and high proportion of chain-

lengths DP 6-12, or amylopectins with high content of phosphate monoester groups, had 

lower gelatinization temperatures. 

Relationship Between Starch Thermal and Pasting Properties 

Negative correlations between starch thermal and pasting properties far outweigh any 

positive correlations observed for rice and wheat starches. Setback has been reported to be 

negatively correlated to Tp (Noda et al. 2001) Tc and AH (Bhattacharya et al. 1999). Peak 

time was negatively correlated to T0, Tp, Tc and AH (Bhattacharya et al. 1999). Negative 

correlations have also been observed between pasting temperature and Tp, and also between 

AH and peak viscosity (Noda et al. 2001). The only positive relationship observed is higher 
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pasting temperature of wheat starch with higher AH of amylose-lipid complex (Noda et al. 

2001). 

Studies of physicochemical properties of hull-less barley found positive relationships 

between starch thermal and pasting properties (Li et al. 2001). Tp and Tc were both 

positively correlated to peak viscosity and breakdown. Studies of corn starch also found 

predominantly more positive relationships between thermal and pasting properties. T0 of 

native and retrograded starch was positively correlated to peak viscosity, final viscosity and 

setback, while pasting temperature was negatively correlated to native T0 and range of 

retrograded gelatinization temperature (Seetharaman et al. 2001). 

ULTRASOUND AS TOOL FOR TEXTURE MEASUREMENTS 

Ultrasound in food science 

In the last two decades, ultrasound has emerged as a promising new technology that 

will enable fresh produce wholesalers and food processors to nondestructively gain 

information about the composition of food products. Recently, potential applications of 

ultrasound in food science have been demonstrated including rheological determination of 

tomato concentrates (Dogan et al. 2003), extraction of compounds from food for liquid 

chromatography with elimination of solvent extraction (Furusawa 2003, Luo et al. 2003), 

inactivation of Salmonella (Alvarez et al. 2003), fat content of meat (Youssao et al. 2003), fat 

content of chocolate (Saggin & Coupland 2002), rapid freezing of potatoes (Li & Sun 2002), 

accelerated aging of wine (Chang & Chen 2003), texture of cheese (Cho et al. 2003) and 

detection of glass or metal in bottled beverages (Zhao et al. 2003). Ultrasound application 

research in the food sciences is gaining momentum in Europe, but to present date just one 
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study, that demonstrated hollow heart disorder of potatoes could be detected by ultrasound, 

in the United States has attempted to utilize ultrasound (Cheng & Haugh 1994). 

Ultrasonics for evaluation of fruits and vegetables 

Ultrasound technology is gaining interest for nondestructive quality assessment of 

fruit and vegetables (Javanaud 1988, Self et al. 1992, Mizrach et al. 1994, Mulet et al. 2003). 

Low-frequency ultrasonics with relatively high excitation voltages have been employed for 

analysis of vegetative tissue because higher frequencies result in high attenuation of 

ultrasound signal, making interpretation difficult (Self & Wainwright 1993, Povey 1998). 

Parameters most commonly measured by low-frequency ultrasonics include velocity, 

attenuation and acoustic impedance of the propagation medium (Mulet et al. 1999). The 

measured parameter depends on the physical properties of the propagation medium, such as 

elastic modulus, density and microstructure. Low-frequency ultrasonics is a non-destructive 

technique because at low intensities the pressure and temperature gradients produced by an 

ultrasonic wave are small, thereby passing through plant material without altering the 

fundamental physical and chemical properties. 

The cause of high attenuation when transmitting ultrasound through plant tissue has 

been investigated with suggestion that presence of air in intercellular spaces retards 

ultrasonic waves (Povey 1989). Further evidence has been provided by measurements of 

attenuation in potato parenchyma observing decreased attenuation with immersion time in 

water and decrease further when tissue was degassed (Sarkar & Wolfe 1983). The 

mechanism by which air has dominant effect on attenuation in plant tissues is likely to be 

scattering of ultrasonic waves (Povey 1989). Scattering occurs in heterogeneous materials in 



www.manaraa.com

82 

which the physical properties of components are different (cellular material and air). Large 

differences in compressibilities of different components, such as when one is air, result in 

likelihood of resonant scattering (Miller 1979, Gaunaurd & Uberall 1981). At resonance, 

attenuation reaches a maximum and can be so large that it becomes impracticable to make 

transmission measurements. At frequencies below resonance, velocity is lower than that of 

the continuous phase (water) and in some systems can be lower than that of the dispersed 

phase (air). Therefore, ultrasonic velocity of some fruits and vegetables has been reported to 

be even slower than air (330 m s"1) (Hayes & Chingon 1982). 

Low frequency ultrasonics has been used to evaluate texture of raw and cooked 

carrots (Nielsen & Martens 1997, Nielsen et al. 1998). During the first two minutes of 

cooking, ultrasonic velocity decreased which may be due to disintegration of cell 

membranes, cell walls and thus a loss of turgor pressure. Extended heating resulted in 

increased ultrasonic velocity and attenuation decreased as a result of changes in mechanical 

properties and air and water content of the carrot tissue. Intercellular spaces grew in number 

and size with prolonged heating, resulting in low adhesion between neighboring cells. 

Further cooking ruptures cell walls causing cellular contents into air-filled intercellular 

spaces, resulting in more uniform ultrasonic signal and reduced acoustic impedance. 

Ultrasound has been used to nondestructively evaluate quality of avocados, mangoes 

and melons. Ultrasonic studies with mangoes established that ultrasonic attenuation could be 

used to accurately measure the sugar content, acidity, total solids and softening process of 

finit (Mizrach et al. 1997, Mizrach et al. 1999b). Attenuation of ultrasound signals increased 

during storage, and was correlated to firmness of avocado fruit during storage (Mizrach et al. 

1996, Mizrach & Flitsanov 1999, Mizrach et al. 1999a). Ripening processes, dry weight and 
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oil content of avocado fruit were also correlated to ultrasonic parameters (Mizrach & 

Flitsanov 1998, 1999). Subsequent studies showed that ultrasound could accurately measure 

avocado firmness and composition of fruit stored at various temperatures (Flitsanov et al. 

2000, Mizrach et al. 2000). During ripening of avocado fruit, volume fraction of intercellular 

spaces tended to decrease and ultrasonic velocity decreased from 350 to 200 m s"1 during a 

12-day period of ripening (Self et al. 1994). Attenuation was found to have potential for 

identifying internal fruit quality of melons, but wave propagation velocity was found to be a 

poor predictor (Mizrach et al. 1991). 
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Abstract 
Structural and physicochemical properties were studied from fruit (pepo) of seven 

winter squash cultivars (Cucurbita maxima D.). Squash starches exhibited B-type X-ray 

diffraction patterns and had continuous granule size distribution with most granule diameters 

either 1.5-2.5 gm, 6-8 (j,m, or 11-13 jam. Squash starches had high iodine affinities for 

amylopectin and had low absolute amylose contents. Squash starch amylopectins had 

weight-average molecular weights ranging from 2.03-3.22 x 108 g/mol, gyration radii of 294-

337 nm, and unusually low polydispersity. Isoamylase-debranched amylopectins showed 

average chain-length varied from DP 26.5 to 28.1. Starch from squash cultivars had onset 

gelatinization temperature ranging from 60.6°C to 63.5°C. Change in enthalpy of 

gelatinization (AH) ranged from 15.9 to 17.4 J/g, measured by using differential scanning 

calorimetry. Rétrogradation rate for squash starches ranged from 41% to 55% after 7 d at 

4°C, and AH was high (6.5 to 9.5 J/g). Squash starch pastes, measured by using Rapid 

Visco-Analyser, had high peak viscosity (174-233 RVU), final viscosity (193-244 RVU) and 

setback (79-100 RVU), with pasting temperature ranging from 65.6°C to 68.8°C. 
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1. Introduction 

Starch is the major carbohydrate in plant storage organs. Starch structures and 

physicochemical properties have been characterized for storage organs of many plant 

families. However, Cucurbitaceae, which includes squash and pumpkins, have had little 

published research of fruit (pepo) starch characteristics. 

Sugimoto et al. (1998a), investigated fruit starch properties of one cultivar each of 

Cucurbita maxima D. and C. moschata D. during development. Squash starch was shown to 

exhibit a B-type x-ray pattern, granule size ranging from 2.9 to 8.8 jam, amylose content 

ranging from 14-23%, and an onset gelatinization temperature of 62-66°C. 

Starch granules were found to have a larger diameter range (3-35 (am) than reported 

by Sugimoto et al. (1998a) for the same C. maxima D. cultivar (Yoshida, 1989). Starch 

content and granule size variation between external and internal cellular layers of the fruit 

were also observed. 

Few cultivars of squash have their starch properties characterized. Additionally, to 

our knowledge, there has been no report of starch rétrogradation, phosphorus content of 

starch, absolute amylose content, and amylopectin structures such as molecular size, gyration 

radii, and amylopectin branch chain-length distribution, in any Cucurbita L. sp. starch. In 

this paper, we thoroughly characterize the structures and physicochemical properties of fruit 

starch isolated from seven cultivars of Cucurbita maxima D., grown in the same year, at 
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same location and using identical procedures. Structures and physicochemical properties will 

be related to their textural and eating qualities in Chapter 5. 

2. Materials and methods 

2.1 Plant Material 

Seven squash cultivars were planted in summer of 1998 at an Iowa State University 

farm site 1.7 miles south of Ames, Iowa (geographical location 41° 58' 57.5" N, 93° 38' 

22.9"), in a completely randomized block (3.05 m x 3.05 m blocks) with 18 replicates (4 

plants/replicate). Normal crop husbandry was followed as required. Climatic conditions 

during the 1998 season can be found in Chapter 7. Five replicates of each cultivar were 

randomly selected for analysis of starch characteristics. Squash cultivars studied were three 

buttercups (Delica, Kurijiman and Sweet Mama), one Halloween-type (Prizewinner), one 

Hubbard-type (Scarlet Warren), one Crown-type (Whangaparoa Crown) and one Native 

American Indian squash (Lakota) (Coyne, Reiser, Sutton, & Graham, 1995). Seeds were 

purchased for Kurijiman, Scarlet Warren and Whangaparoa Crown from Web ling and 

Stewart Ltd., Petone, New Zealand, for Delica from Yates New Zealand Ltd., Onehunga, 

New Zealand, for Prizewinner from King's Seeds, Auckland, New Zealand, for Sweet Mama 

from Henry Field Seed & Nursery Co., Shenandoah, IA, and for Lakota from W. Atlee 

Burpee & Co., Warminster, PA. Squash fruit maturity was adjudged when stalks became 

woody (Hawthorne, 1990), and this stage had been previously shown to have the highest 

starch content (Irving, Hurst, & Ragg, 1997). 

2.2 Starch Isolation 
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Starch was isolated from squash fruit by using the method reported by Badenhuizen 

(1964) with slight modifications (Kasemsuwan, Jane, Schnable, Stinar, & Robertson, 1995). 

Two fruit per replicate, peeled and deseeded, were used for starch isolation. Squash pulp was 

ground in 0.01 M HgCl] and then filtered through 106 jam mesh. Filtrate was washed with 

10% toluene in 0.1 M NaCl, washed three times with distilled water, twice with ethanol, and 

then recovered by filtration using Whatman No. 4 filter paper. Purified starch cake was dried 

in a convection oven at 35°C for 24 h. 

2.3 Starch Granule Morphology by Scanning Electron Microscopy 

Starch granules, spread on silver tape and mounted on a brass disk, were coated with 

gold/palladium (60/40) for all five replicates of each cultivar. Sample images were observed 

at 1500x magnification under a scanning electron microscope (JOEL model 1850, Tokyo, 

Japan) following the method of Jane, Kasemsuwan, Leas, Zobel, & Robyt (1994). 

2.4 Crystalline Structure by X-ray Diffractometry 

Crystallinity of starch granules was studied using X-ray diffractometry. X-ray diffraction 

patterns were obtained with copper, Ka radiation using a Siemens D-500 diffractometer 

(Siemens, Madison, WI). Analysis was conducted following procedure of Song & Jane 

(2000). Degree of crystallinity was calculated based on method of Hayakawa, Tanaka, 

Nakamura, Endo, & Hoshino (1997). The following equation was used to determine percent 

crystallinity: 

Crystallinity (%) = AC/(AC + Aa) x 100 
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where Ac = crystalline area on the X-ray diffractogram and Aa = amorphous area on the X-

ray diffractogram. 

2.5 Molecular Weight Distribution and Gyration Radius of Amylopectin by High-

Performance Size-Exclusion Chromatography (HPSEC) 

Weight-average molecular weight and z-average gyration radius of amylopectin were 

determined using high-performance size-exclusion chromatography equipped with multi-

angle laser-light scattering and refractive index detectors (HPSEC-MALLS-RI). Starch 

samples, duplicate measurements of each replicate, were prepared as described by Yoo & 

Jane (2002a). The HPSEC system consisted of a HP 1050 series isocratic pump (Hewlett 

Packard, Valley Forge, PA), a multi-angle laser-light scattering detector (Dawn DSP-F, 

Wyatt Tech. Co., Santa Barbara, CA) and a HP 1047A refractive index detector (Hewlett 

Packard, Valley Forge, PA). To separate amylopectin from amylose, Shodex OH pak KB-G 

guard column and KB-806 and KB-804 analytical columns (Showa Denko K.K., Tokyo, 

Japan) were used. Operating conditions and data analysis are described by Yoo & Jane 

(2002b). 

2.6 Phosphorus content 

Phosphorus content was determined by the method described by Smith & Caruso (1964) 

except that five grams of starch was used and all glassware was soaked 24 h in 0.625% 

sodium molybdate (w/v) in 1.75 N H^SO^:lO% ascorbic acid (w/v) mixture (4:1) to remove 

residual phosphorus. Duplicate analysis of each replicate was conducted. 
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2.7 Absolute Amylose Contents by Potentiometric Autotitration and Concanavalin A 

precipitation 

Absolute amylose content of starch was determined following the procedure of Lu, Jane, 

Keeling, & Singletary (1996). Analysis was based on iodine affinities of defatted whole 

starch and amylopectin fraction using a potentiometric autotitrator (702 SM Titrino, 

Brinkmann Instrument, Westbury, NY). Starch samples were defatted using a 90% dimethyl 

sulfoxide (DMSO) solution, followed by alcohol precipitation. Amylose content of defatted 

starch samples was also determined by treating starch samples with concanavalin A as 

described by Yun & Matheson (1990) and measuring glucose content, by the glucose oxidase 

method, of the a-amylase and amyloglucosidase hydrolyzed, non-concanavalin A-complexed 

fraction using amylose/amylopectin assay kit from Megazyme International Ireland Ltd. 

(Wicklow, Ireland). Determination of amylose content, by both methods, was duplicated for 

each squash cultivar replicate. 

2.8 Amylopectin Branch Chain-Length Distribution by High-Performance Anion-Exchange 

Chromatography (HPAEC) and by HPSEC 

Amylopectin was fractionated by complexing amylose with n-butanol as described by 

Schoch (1942). Amylopectin (10 mg/mL) was defatted in boiling 90% DMSO for 1 h, 

followed by stirring for 24 h and then debranched using isoamylase (EC 3.2.1.68 from 

Pseudomonas amyloderamosa) (EN 102, Hayashibara Biochemical Laboratories Inc., 

Okayama, Japan) as described by Jane & Chen (1992). Branch chain-length distribution of 

amylopectin was determined using an HPAEC system (Dionex-300, Sunnyvale, CA) 

equipped with an amyloglucosidase (EC 3.2.1.3, from Rhizopus mold, A-7255, Sigma 
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Chemical Co., St Louis, MO) post-column, on-line reactor and a pulsed amperometric 

detector (HPAEC-ENZ-PAD) (Wong & Jane, 1997a). PA-100 anion exchange analytical 

column (250 x 4 mm, Dionex, Sunnyvale, CA) and a guard column were used for separating 

debranched amylopectin samples. Gradient profile of eluents and operating conditions were 

described previously (McPherson & Jane, 1999). Branch chain-length distribution of 

amylopectin was also analyzed to determine extra-long branch-chains by using a HPSEC 

equipped with a RI detector. Operating conditions have been described earlier (McPherson 

& Jane, 1999), except flow rate was 0.6 mL/min, analytical column used for analysis was 

Shodex OH pak SB-803HQ (Showa Denko K.K., Tokyo, Japan) and sample concentration 

was 0.8 mg/mL. HPAEC-ENZ-PAD and HPSEC analysis was duplicated for each replicate 

of each cultivar. 

2.9 Thermal Properties by Differential Scanning Calorimetry (DSC) 

Thermal properties of starch were determined using a differential scanning calorimeter 

(DSC-7, Perkin-Elmer, Norwalk, CT) (Jane et al. 1999). Approximately 2 mg of starch was 

weighed in an aluminum pan, mixed with 6 mg of deionized water and sealed. The sample 

was allowed to equilibrate for 2 hr and scanned at a rate of 10°C/min over a temperature 

range of 10-100°C. An empty pan was used as the reference. The rate of starch 

rétrogradation was determined using the same gelatinized samples, stored at 4°C for 7 d, and 

analyzed using DSC as described previously (White, Abbas, & Johnson 1989). Analysis of 

all thermal properties were carried out in triplicate for each replicate of each cultivar. 

2.10 Pasting Properties by Rapid Visco-Analyser (RVA) 
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Starch pasting properties were analyzed using a Rapid Visco-Analyser (RVA-4, Newport 

Scientific, Sydney, Australia) (Jane et al. 1999). Starch suspension (8%, w/w), in duplicate 

for each replicate of each cultivar, was prepared by weighing starch (2.24 g, dry starch basis 

(dsb)) into a RVA canister and making up the total weight to 28 g with distilled water. The 

starch suspension was equilibrated at 30°C for 1 min, heated at a rate of 6.0°C/min to 95°C, 

maintained at that temperature for 5.5 min, and then cooled to 50°C at a rate of 6.0°C/min. 

Constant paddle rotating speed (160 rpm) was used throughout entire analysis. 

2.11 Data analysis 

All statistical significance tests were calculated by using SAS (SAS Institute Inc. 1999) and 

applying Tukey difference test (Ramsey & Schafer, 1996). 

3. Results and discussion 

3.1 Starch granule morphology 

Scanning electron micrographs show that all squash cultivar starches have a continuous 

granule size distribution, but with a preponderance of granules ranging from 1.5-2.5 pm, 6-8 

Hm or 11-13 fim in diameter (Fig. 1). Squash starches exhibited a mixture of spherical and 

polyhedral granules with some dome-shaped granules that suggest that some squash granules 

are compound. Dome-shaped granules tended to have larger diameters on average, which 

would be expected for compound granules. Yoshida (1989) reported that starch granules in 

the endocarp region of squash fruit flesh have compound starch granules, but the remainder 

of the fruit is absent of compound granules. Compound starch granules are not common 
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among all botanical sources currently investigated, with their occurrence reported only in oat 

(Jane et al. 1994), oxalis (Cortella & Pochettino 1995), wrinkled pea (Ratnayake et al. 2002), 

rice (Jane et al. 1994, Champagne 1996), waxy rice (Jane et al. 1994), pineapple (Jane et al. 

1994) and some hull-less barley lines (Li et al. 2001a). Squash starch granules had many 

surface indentations. Large granules of Whangaparoa Crown, Lakota, Prizewinner and 

Sweet Mama had low incidence of indentations, whereas Delica, Kurijiman and Warren 

Scarlet frequently had indentations. Whangaparoa Crown and Prizewinner had a high 

incidence of indentations in medium-size starch granules. Granule indentations could be due 

to non-uniform growth within starch granules or collision of spherulites as granules expand 

since some squash starch granules are compound. Sugimoto et al. (1998a) reported two 

cultivars of squash starch to have low size variation and average granule size of 7.0-7.5 (j,m 

for starch collected from fruit at harvest. In contrast, additional research showed a scanning 

electron micrograph of squash starch displaying a wider granule size distribution that is 

similar in dimensions to what we observed (Sugimoto, Yamashita, Suzuki, Morishita, & 

Fuwa, 1998b). Yoshida (1989) reported starch granule diameters up to 35 (xm, but we did 

not observe granule dimensions above 14 |xm. 

3.2 Crystalline structure 

Squash starches all exhibited typical B-type X-ray diffraction patterns (Fig. 2), with a strong 

peak at 20 = 17.2°, another peak at 20 = 5.6°, and a split peak at 20 = 22-24°. Prizewinner, 

Warren Scarlet, Whangaparoa Crown and Kurijiman all had an additional peak at 20 = 28.2° 

that was not observed in other three cultivars. Percentage crystallinity of Delica, Kurijiman, 

Lakota, Prizewinner, Sweet Mama, Warren Scarlet and Whangaparoa Crown squash 
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42.9 respectively. The three buttercup cultivar squash starches, Delica, Kurijiman and Sweet 

Mama, showed different degrees of crystallinity. Percentage crystallinity of some squash 

starches is higher than other native starches, such as 20-28% reported for a variety of A- and 

B-type starches (Cooke & Gidley, 1992), 25 to 44% reported for a range of wheat starches 

(Fujita, Yamamoto, Sugimoto, Morita, & Yamamori, 1998), 12 to 18% reported for different 

wheat starches (Yoo & Jane, 2002a), and 38% reported for normal maize (Keppel, 2001). 

3.3 Amylose content 

Iodine affinities for defatted whole starch and the corresponding apparent amylose contents 

were significantly different for the squash cultivars, with Kurijiman higher in apparent 

amylose than Lakota (Table 1). Absolute amylose content, calculated by subtracting iodine 

affinity for amylopectin fraction from the defatted whole starch, significantly differed 

between the squash cultivars. Iodine affinities of the amylopectin fraction were high relative 

to most native starches, resulting in absolute amylose content of all squash starches 

substantially lower than apparent amylose content. Iodine affinity of amylopectin fraction 

for Prizewinner was significantly higher than for Lakota. Absolute amylose content of the 

squash cultivars was significantly different but the conservative Tukey statistical test 

detected no significant difference among individual cultivars. However, cultivars could be 

divided into two groups, those with lower absolute amylose content, Prizewinner, Sweet 

Mama and Lakota, compared to other four cultivars. High iodine affinities for amylopectin 

fraction indicate squash starches have amylopectins with considerable proportion of long 

branch chains. 
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Concanavalin A underestimated the amylose content for all squash cultivars 

but in general the relativeness among cultivars was similar to that of absolute amylose 

content. The underestimation of amylose content using concanavalin A could be due to rapid 

rétrogradation of amylose. Differences in amylose content among squash cultivars using 

concanavalin A were not significant, but there was still some weak evidence to suggest 

variable amylose content. Concanavalin A, and particularly apparent amylose, appear to be 

unsuitable methods for measuring amylose content of squash starches, but for other starches, 

good agreement between concanavalin A and iodine potentiometric titration methods has 

been reported (Gibson, Solah, & McCleary, 1997). 

3.4 Phosphorus content 

Phosphorus content of starch can have great influence on the functional properties. Apart 

from potato, most B-type starches have phosphorus content lower than normal cereal 

starches. Squash starches phosphorus content ranged from 0.022% for Whangaparoa Crown 

to 0.026% for Lakota (dry weight basis, w/w), and cultivars were not significantly different. 

Phosphorus content of all squash starches was higher than reported for all B-type starches, 

except potato, but was lower than all normal cereal starches except maize (Lim , 

Kasemsuwan, & Jane, 1994; Jane, Kasemsuwan, Chen, & Juliano, 1996; Kasemsuwan & 

Jane, 1996). 

3.5 Amylopectin molecular weight and size 



www.manaraa.com

138 

Average molecular weight, polydispersity, and gyration radius of squash starches are shown 

in Table 2. Squash starch weight-average molecular weight (Mw) ranged from 2.03 to 3.22 x 

108 g/mol for the seven squash cultivars, with no significant differences. Squash 

amylopectin Mw is smaller than normal maize and rice (Yoo & Jane, 2002b) but comparable 

to wheat (Yoo & Jane, 2002a) and larger than barley, tapioca and potato starches (Yoo & 

Jane, 2002b). A distinctive characteristic of squash amylopectins was their low 

polydispersity (Mw/Mn), particularly in Lakota, Prizewinner, Whangaparoa Crown and Sweet 

Mama cultivars. Polydispersity of squash amylopectin is substantially lower than 

amylopectin from other native starches (Table 3), and it is remarkably uniform in size for 

biological molecules of such large magnitude. Although there is no clear trend, amylopectin 

polydispersities less than two were found for only A-type starches with the exception of 

potato (1.79). Therefore it is surprising that the B-type squash amylopectin would have such 

low polydispersity. 

Gyration radius was not significantly different for the squash cultivars indicating that 

their spatial arrangement of amylopectin chains within molecules may be similar. 

Prizewinner and Whangaparoa Crown amylopectins were considerably denser than other 

squash cultivars but differences were not significant. Squash amylopectin densities were 

lower than most cereal starches, but higher than tuber and root starches (Yoo & Jane, 2002b). 

Gyration radius and density of amylopectin for squash starch is different from all other B-

type starches, except for ae wx maize amylopectin which had Mw, gyration radius and density 

similar to squash (Yoo & Jane, 2002b). 

3.6 Debranched amylopectin chain distribution 
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HPAEC-ENZ-PAD chromatograms of each squash cultivar with standard deviation of each 

individual DP is shown in Fig. 3a and 3b. Chromatograms show that all squash starches have 

peak chain-length at DP 13-14 and the error associated with quantifying individual DP is 

low. 

Isoamylase-debranched squash amylopectin revealed the chain-length distribution 

(Table 4). Average amylopectin chain-length varied from DP 26.5-28.1 for the squash 

cultivars and was not significantly different. However, proportion of short amylopectin 

chains was significantly different. The greatest observable difference in squash amylopectin 

chain-length distribution was chains with DP <12. Lakota had significantly less DP 6-12 

amylopectin chains than all other cultivars. Prizewinner had significantly more DP 6-9 

amylopectin chains than Delica and Lakota. Lakota had significantly greater proportion of 

DP 13-24 than Sweet Mama, Delica and Warren Scarlet, and significantly greater proportion 

of DP 25-36 than Kurijiman, Whangaparoa Crown and Prizewinner. Warren Scarlet also had 

greater proportion of DP 25-36 than Prizewinner. Long amylopectin chains (DP > 37) were 

not significantly different between the squash cultivars. Squash amylopectin average branch 

chain-length is longer than most A-type starches such as barley, rice and normal maize, 

comparable to tapioca and C-type starches, but shorter than all other B-type starches (Jane et 

al. 1999). 

Iodine affinity of the amylopectin fraction reflects branch chain-length distribution. 

Proportion of long amylopectin chains (DP > 37) of squash starches was comparable to all 

other B-type starches (Jane et al. 1999), thus explaining the high iodine affinity of the 

amylopectin fraction. 



www.manaraa.com

140 

3.7 Thermal properties 

Thermal properties of native squash starches are shown in Table 5. Three buttercup squash 

cultivars, Delica, Kurijiman and Sweet Mama, showed some consistence in starch properties 

that differed from other types of squash starch. The three buttercup squash starches 

displayed onset gelatinization temperature (T0), which was significantly higher than 

Prizewinner and Whangaparoa Crown. In contrary, Whangaparoa Crown had significantly 

lower peak gelatinization temperature (Tp) than the three buttercup cultivars and Lakota, and 

had significantly lower conclusion gelatinization temperature (Tc) than all other cultivars 

except Delica. The range of gelatinization temperature (Tc-T0) (ROG) is very low compared 

with other starches . Starch from three buttercup squash cultivars had significantly lower 

range of gelatinization than Prizewinner and Warren Scarlet, and to our knowledge, is 

amongst the lowest reported for any starch, with water yam (Dioscorea alata) the only starch 

lower with a ROG of 5.4°C (Farhat, Oguntona, & Neale, 1999) and barley the next closest, 

with a ROG of 6.6°C (Jane et al. 1999). The low ROG could be due to the low 

polydispersity of amylopectins that squash starches exhibit, causing a sharp melting peak of 

the relatively uniform amylopectins. Biliaderis, Maurice, and Vose (1980) suggested that the 

greater the degree of amylopectin branching, the wider the melting temperature range, but in 

our study we found no correlations between T0-Tc and amylopectin branch-chain distribution. 

Enthalpy change of gelatinization for all squash starches was similar to other B-type starches 

(Jane et al. 1999), and there were no significant differences between cultivars. 

Sugimoto et al. (1998a) studied thermal properties of two squash starches, in which 

one was Cucurbita maxima cv. Ebisu, which is the Japanese name for Delica. They reported 

an T0 of 62.1 °C for Ebisu, lower than 63.4°C that we report for Delica, and a Tc of 74.1°C, 
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much higher than 69.7°C we report for Delica. Therefore their range of gelatinization (12°C) 

is almost twice what we report. 

Squash starches, retrograded for 7 d at 4°C, showed no significant differences for T0, 

Tp and Tc (Table 6). Despite no significant differences in enthalpy change of gelatinization 

for native starches, retrograded squash starches were significantly different, with Lakota and 

Sweet Mama retrograded starch having higher enthalpy change of gelatinization than 

Prizewinner. Enthalpy change of gelatinization of retrograded starch for squash is higher 

than all other native starches, except green banana (Jane et al. 1999). Percentage 

rétrogradation of Lakota, Sweet Mama and Warren Scarlet starches were significantly higher 

than Prizewinner. 

3.8 Pasting properties 

Pasting properties of squash starches are shown in Table 7. Peak viscosity was the only 

pasting parameter that was significantly different for squash starches, with Lakota and 

Prizewinner peak viscosity being higher than Warren Scarlet, Delica and Whangaparoa 

Crown. Pasting temperature of squash starches was only 4-6°C higher than T0, which could 

be attributed to the absence of phospholipids and low amylose content, conducive for granule 

breakdown during swelling. Final viscosity of greater than 200 RVU for squash starches is 

considerably higher than A-type starches, but typical for B-type starches (Jane et al. 1999). 

Setback for all squash starches is higher than for most starches, with cattail millet, mungbean 

and green leaf canna starches the only exceptions (Jane et al. 1999). High setback indicates 

that amylose may be retrograding very rapidly, and this may explain why concanavalin A 

method underestimates the amylose content of squash starches. 
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Squash starch pasting profiles are compared with normal maize and potato starch in 

Fig.4. Whangaparoa Crown and Delica tended to resemble a normal maize pasting profile 

with slightly higher peak viscosity, breakdown, setback and final viscosity. Lakota pasting 

profile showed some resemblance to potato starch, with peak viscosity high relative to other 

squash starches, and pasting temperature and setback similar to normal maize. 

3.9 Presence of long amylopectin chains 

The high iodine affinity of squash starch amylopectin fraction could be due to extremely long 

branch chains present in amylopectins, which were unable to be detected by HPAEC-ENZ-

PAD. To investigate this, squash amylopectin was debranched using isoamylase and 

molecular size was characterized using HPSEC. The HPSEC chromatograms showed two 

distinct regions of low and high molecular weight chains (Table 8). Peak I represents the 

longer amylopectin chains and their proportion of the total amylopectin chains for the squash 

cultivars Lakota, Prizewinner, Sweet Mama and Warren Scarlet were significantly higher 

than the proportion of long amylopectin chains of Kurijiman. This result is not in agreement 

with the HPAEC analysis (Table 4). No amylopectin chains longer than detection limit (DP 

~ 80) of HPAEC-ENZ-PAD were observed, which is consistent with other B-type starches. 

The proportion of longer amylopectin chains is greater than the 17 % reported for tapioca 

starch (Wong & Jane, 1997b), and 33 % reported for com (Jideani, Takeda, & Hizukuri, 

1996) or wheat starch (Yoo & Jane 2002a). 

3. JO Correlations to amylose content 
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Correlation coefficients among selected squash starch structural and functional 

properties are shown in Table 9. Correlation coefficients are mentioned in the text when not 

included in Table 9. Apparent amylose content of squash starches was correlated to 

amylopectin chains of length DP 6-9 (r = 0.74, P = 0.05), DP 6-12 (r = 0.78, P = 0.04), DP 

13-24, DP 25-36, onset gelatinization temperature of retrograded starch (TQR) (r = 0.73, P -

0.05), and pasting properties of peak viscosity, breakdown, final viscosity and setback. 

Iodine affinity of amylopectin fraction was correlated to amylopectin chains of length DP 6-9 

(r = 0.77, P = 0.04), DP 6-12 (r - 0.74, P = 0.05), and DP 25-36 (r = 0.77, P = 0.04). 

Absolute amylose content was correlated to amylose content measured by concanavalin A, 

and pasting properties of peak viscosity, breakdown and final viscosity. Amylose content 

measured by concanavalin A was correlated to final viscosity, setback and long amylopectin 

chains measured by HPSEC. 

Apparent amylose content correlated positively to short amylopectin branch chain-

lengths and negatively correlated to intermediate amylopectin branch chain-lengths found in 

our study contrasts previous findings of apparent amylose content positively correlated to 

amylopectin branch chain-length for barley (Salomonsson & Sundberg, 1994, Li, Vasanthan, 

Rossnagel, & Hoover, 2001a) and maize (Cheetham & Tao, 1997). The negative relationship 

observed between squash apparent amylose content and peak or final viscosity is in 

agreement with many other studies (Wang, White, & Pollak, 1993; Kusutani, Asanuma, 

Kogure, Seki, Hirata, & Yanagihara, 1993; Reddy, Subramanian, Ali, & Bhattacharya, 1994; 

Kitahara et al. 1996; Collado & Corke, 1997; Yoshii, Arisaka, Jou, & Hayakawa, 1997; Jane 

et al. 1999; Kuno, Kainuma, & Takahashi, 2000; Blennow, Bay-Smidt, & Bauer, 2001). 
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3.11 Correlations to Amylopectin Molecular Weight and Size 

Squash starch Mw was correlated to polydispersity, Rz, average amylopectin branch chain-

length, amylopectin branch chains of DP > 37, proportion of long amylopectin chains (DP > 

26) measured by HPSEC, range of gelatinization temperature (ROG), final viscosity and 

setback. Polydispersity was correlated to setback and proportion of long amylopectin chains 

measured by HPSEC. Rz was correlated to proportion of amylopectin chain-lengths of DP 

25-36, proportion of long amylopectin chains measured by HPSEC, ROG and setback. 

Amylopectin density was correlated to T0, Tp (r = -0.77, P = 0.04) and pasting temperature. 

Squash amylopectins with higher Mw have wider gyration radius most likely because 

of a greater number of clusters per molecule rather than different cluster structure as shown 

previously for various starches (Takeda, Shibahara, & Hanashiro, 2003). Negative 

correlation observed between Mw and average amylopectin branch chain-length or proportion 

of DP > 37 is surprising, and contrasts findings by Mua and Jackson (1997) and Lu, Chen, & 

Lii (1997) who both reported higher molecular weight for amylopectins with longer chain-

lengths, and You, Fiedorowicz, & Lim (1999) who reported similar chain-length distribution 

for different molecular-weight amylopectins. Correlations indicate that squash cultivar 

starches with narrow ROG possess a greater proportion of low amylopectin molecular weight 

with smaller Rz. 

3.12 Correlations to Amylopectin Branch Chain-Length Distribution 

Average squash cultivar amylopectin branch chain-length was correlated to T0, ROG and AH. 

Short branch chains of amylopectin were only correlated to amylose content. Amylopectin 

branch chain-lengths of DP 13-24 were correlated to peak viscosity and breakdown, and 
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chain-lengths of DP 25-36 were correlated to TcR (r = 0.86, P = 0.01), percent rétrogradation 

(r = 0.77, P = 0.04) and Rz. Long amylopectin branch chains (DP > 37) were correlated to 

ROG, breakdown, setback and Mw. 

Fine structure of amylopectin correlated to pasting properties has previously been 

reported. Long amylopectin chains were found to be negatively correlated to breakdown and 

conversely, short amylopectin chains were positively correlated (Han & Hamaker, 2001). 

Peak viscosity positively correlated to intermediate amylopectin branch chains has been 

previously reported for barley amylopectins of DP 18-34 length (Li, Vasanthan, Rossnagel, 

& Hoover, 2001b). However, increasing peak viscosity with increasing amylopectin branch 

chain-length has also been reported (Shibanuma, Takeda, & Hizukuri, 1996; Sasaki & 

Matsuki, 1998). Results imply that long amylopectin chains contribute greatly to breakdown 

of swollen granules and viscosity after gelatinization, and this finding has recently been 

found for apple starches (Chapter 10). T0 correlated to amylopectin average branch chain-

length has been reported previously (Jane et al. 1999, Li et al. 2001b). Higher squash 

average amylopectin branch chain-lengths resulted in higher AH, which has been reported 

previously for barley starches (Tang, Ando, Watanabe, Takeda, & Mitsunaga, 2001). 

Negative correlation that we observed between amylopectin average branch chain-length and 

ROG contrasts findings by Li et al. (2001b) who reported positive correlation between long 

amylopectin chains and ROG and negative correlation for short amylopectin chains. 

Correlations between retrograded starch and amylopectin branch chain-length distribution 

were observed only for DP 25-36, which is expected since high proportion of short 

amylopectin chains (DP < 12) has been shown to inhibit rétrogradation (Wûrsch & Gumy, 

1994; Lu, Chen, & Lii, 1997). 
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3.13 Correlations to Starch Thermal and Pasting Properties 

In addition to previously mentioned correlations involving thermal properties, To, Tp and AH 

were correlated to pasting temperature (r = 0.86, P = 0.01 for Tp) and ROG was correlated to 

AH. All correlations involving pasting properties have been previously mentioned except 

both final viscosity and setback were correlated to proportion of long amylopectin branch 

chains measured by HPSEC. 

4. Conclusion 

Seven cultivars of squash starches had continuous granule size distribution, displayed B-type 

X-ray diffraction patterns, consisted of low amylose (12.9-18.2%), and moderate phosphorus 

content (0.022-0.026%). All squash starches had long amylopectin branch chain-lengths, but 

Lakota had relatively fewer short and long chains. Distinctive attributes of squash starches 

were low polydispersity and range of gelatinization, and high rétrogradation rate. Squash 

starches have high peak and final viscosity, very high setback, and pasting temperature was 

only 4-5 °C higher than onset gelatinization temperature. 

Acknowledgements 

The authors wish to thank Crop & Food Research, Palmerston North, New Zealand, for 

financial support, Dr. Wayne King for assistance with field site, Tracey Pepper for electron 

microscopy assistance, Scott Schlorholtz for X-ray diffraction assistance, David Knollhoff 

for assistance with harvesting and Dr Marian McKenzie for helpful discussions. 

References 

Badenhuizen, N. P. (1964). 



www.manaraa.com

147 

General method for starch isolation. In R. L. Whistler, R. J. Smith, J. N. BeMiller, & M. L. 

Wolform (Eds.), (pp. 14-15). Methods in Carbohydrate Chemistry: Starch, 4. London: 

Academic Press. 

Biliaderis, C. G., Maurice, T. J., & Vose, J. R. (1980). 

Starch gelatinization phenomena studied by differential scanning calorimetry. Journal of 

Food Science, 45, 1669-1674. 

Blennow, A., Bay-Smidt, A. M., & Bauer, R. (2001). 

Amylopectin aggregation as a function of starch phosphate content studied by size 

exclusion chromatography and on-line refractive index and light scattering. International 

Journal of Biological Macromolecules, 28, 409-420. 

Champagne, E. T. (1996). 

Rice starch composition and characteristics. Cereal Foods World, 41, 833-838. 

Cheetham, N. W. H. & Tao, L. (1997). 

The effect of amylose content on the molecular size of amylose and on the distribution of 

amylopectin chain length in maize starch. Carbohydrate Polymers, 33, 251 -261. 

Collado, L. S. & Corke, H. (1997). 

Properties of starch noodles as affected by sweetpotato genotype. Cereal Chemistry, 74, 

182-187. 

Cooke, D. & Gidley, M. J. (1992). 

Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic 

transition. Carbohydrate Research, 227\ 103-112. 

Cortella, A. R. & Pochettino, M. L. (1995). 

Comparative morphology of starch of three Andean tubers. Starch/Stàrke 47 \ 455-461. 



www.manaraa.com

148 

Coyne, D. P., Reiser, J. M., Sutton, L. & Graham, A. (1995). 

'Lakota' winter squash, a cultivar derived from Native American Sources in Nebraska. 

HortScience, 30, 1106-1107. 

Farhat, I. A., Oguntona, T. & Neale, R. J. (1999). 

Characterisation of starches from West African yams. Journal of Science and Food 

Agriculture, 79: 2105-2112. 

Fujita, S., Yamamoto, H., Sugimoto, Y., Morita, N. & Yamamori, M. (1998). 

Thermal and crystalline properties of waxy wheat (Triticum aestivum L.) starch. Journal of 

Cereal Science, 27: 1-5. 

Gibson, T. S., Solah, V. A., & McCleary, B. V. (1997). 

A procedure to measure amylose in cereal starches and flours with concanavalin A. 

Journal of Cereal Science, 25, 111-119. 

Han, X. Z. & Hamaker, B. R. (2001). 

Amylopectin fine structure and rice starch paste breakdown. Journal of Cereal Science, 34, 

279-284. 

Hanashiro, I., Abe, J. & Hizukuri, S. (1996). 

A periodic distribution of the chain length of amylopectin revealed by high-performance 

anion-exchange chromatography. Carbohydrate Research, 283: 151-159. 

Hawthorne, B. T. (1990). 

Age of fruit at harvest influences incidence of fungal storage rots on fruit of Cucurbita 

maxima D. hybrid 'Delica'. New Zealand Journal of Crop and Horticultural Science, 18, 

141-145. 

Hayakawa, K., Tanaka, K., Nakamura, T., Endo, S., & Hoshino, T. (1997). 



www.manaraa.com

149 

Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): Properties of starch 

gelatinzation and rétrogradation. Cereal Chemistry, 74, 576-580. 

Irving, D. E., Hurst, P. L. & Ragg, J. S. (1997). 

Changes in carbohydrates and carbohydrate metabolizing enzymes during the development, 

maturation, and ripening of buttercup squash (Cucurbita maxima D. 'Delica'). Journal of 

the American Society of Horticultural Science, 122: 310-314. 

Jane, J. & Chen, J. F. (1992). 

Effect of amylose molecular size and amylopectin branch chain length on paste properties 

of starch. Cereal Chemistry, 69, 60-65. 

Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M. & 

Kasemsuwan, T. (1999). 

Effects of amylopectin branch chain length and amylose content on the gelatinization and 

pasting properties of starch. Cereal Chemistry, 76, 629-637. 

Jane, J., Kasemsuwan, T., Chen, J. F. & Juliano, B. O. (1996). 

Phosphorus in rice and other starches. Cereal Foods World, 41: 827-832. 

Jane, J., Kasemsuwan, T., Leas, S., Zobel, H., & Robyt, J. F. (1994). 

Anthology of starch granule morphology by scanning electron microscopy. Starch/Stàerke, 

46, 121-129. 

Jane, J., Wong, K. S. & McPherson, A. E. (1997). 

Branch-structure difference in starches of A-type and B-type X-ray patterns revealed by 

their Nâegeli dextrins. Carbohydrate Research, 300: 219-227. 

Jideani, I. A., Takeda, Y. & Hizukuri, S. (1996). 



www.manaraa.com

150 

Structures and physicochemical properties of starches from acha (Digitaria exilis), iburu 

(D. iburua), and tamba (Eleusine coracana). Cereal Chemistry, 73: 677-685. 

Kasemsuwan, T. & Jane, J. (1996). 

Quantitative method for the survey of starch phosphate derivatives and starch phospholipids 

by 31P nuclear magnetic resonance spectroscopy. Cereal Chemistry, 73: 702-707. 

Kasemsuwan, T., Jane, J., Schnable, P., Stinar, P., & Robertson, D. (1995). 

Characterization of the dominant mutant amylose-extender (^el-5180) maize starch. 

Cereal Chemistry, 71, 457-464. 

Keppel, C. R. (2001). 

A study of glucose storage polymers: Teosinte starch, starch crystallinity and 

Cyanobacterial glycogen. Masters of Science thesis, Iowa State University. 

Kitahara, K., Mizukami, S., Suganuma, T., Nagahama, T., Yoshinaga, M., Kumagai, T., & 

Yamakawa, O. (1996). 

A new line of sweetpotato with a low amylose content. Oyo Toshitsu Kagaku: Journal of 

Applied Glycoscience, 43, 551-554. 

Kuno, M., Kainuma, K., & Takahashi, S. (2000). 

Physicochemical characteristics of low-amylose rice starches. Oyo Toshitsu Kagaku: 

Journal of Applied Glycoscience, 47, 319-326. 

Kusutani, A., Asanuma, K., Kogure, K., Seki, M., Hirata, S., & Yanagihara, T. (1993). 

Yield and eating quality of rice cultivar Kinuhikari in early season culture in warmer area. 

Japanese Journal of Crop Science, 61, 603-609. 

Li, J. H., Vasanthan, T., Rossnagel, B., & Hoover, R. (2001a). 



www.manaraa.com

151 

Starch from hull-less barley: I. Granule morphology, composition and amylopectin 

structure. Food Chemistry, 74, 395-405. 

Li, J. H., Vasanthan, T., Rossnagel, B., & Hoover, R. (2001b). 

Starch from hull-less barley: II. Thermal, rheological and acid hydrolysis characteristics. 

Food Chemistry, 74, 407-415. 

Lim, S., Kasemsuwan, T. & Jane, J. (1994). 

Characterization of phosphorus in starch by3 ̂ -nuclear magnetic resonance spectroscopy. 

Cereal Chemistry 71\ 488-493. 

Lu, S., Chen, L. N., & Lii, C. Y. (1997). 

Correlations between the fine structure, physicochemical properties, and rétrogradation of 

amylopectins from Taiwan rice varieties. Cereal Chemistry, 74, 34-39. 

Lu, T., Jane, J., Keeling, P. L. & Singletary, G. W. (1996). 

Maize starch fine structures affected by ear developemental temperature. Carbohydrate 

Research, 282, 157-170. 

McPherson,A. E. & Jane, J. (1999). 

Comparison of waxy potato with other root and tuber starches. Carbohydrate Polymers, 40, 

57-70. 

Mua, J. P. & Jackson, D. S. (1997). 

Relationships between functional attributes and molecular structures of amylose and 

amylopectin fractions from com starch. Journal of Agricultural and Food Chemistry, 45, 

3848-3854. 

Ramsey, F. L. & Schafer, D. W. (1996). 



www.manaraa.com

152 

The statistical sleuth: A course in methods of data analysis (pp. 154). Belmont, CA: 

Duxbury Press. 

Ratnayake, W. S., Hoover, R. & Warkentin, T. (2002). 

Pea starch: composition, structure and properties - a review. Starch/Stârke, 54, 217-234. 

Reddy, K. R., Subramanian, R., Ali, S. Z., & Bhattacharya, K. R. (1994). 

Viscoelastic properties of rice-flour pastes and their relationship to amylose content and 

rice quality. Cereal Chemistry, 71, 548-552. 

Salomonsson, A. C. & Sundberg, B. (1994). 

Amylose content and chain profile of amylopectin from normal high amylose and waxy 

barleys. Starch/Stâerke, 46, 325-328. 

SAS Institute Inc. (1999). 

The SAS® system for Windows®, version 8. Cary, NC. 

Sasaki, T. & Matsuki, J. (1998). 

Effect of wheat structure on swelling power. Cereal Chemistry, 75, 385-391. 

Schoch, T. J. (1942). 

Fractionation of starch by selective precipitation with butanol. J. Am. Chem. Soc., 64: 

2957-2961. 

Shibanuma, Y., Takeda, Y. & Hizukuri, S. (1996). 

Molecular and pasting properties of some wheat starches. Carbohydrate Polymers, 29, 

253-261. 

Smith, R. J. & Caruso, J. -L. (1964). 



www.manaraa.com

153 

Determination of phosphorus. In R. L. Whistler, R. J. Smith, J. N. BeMiller, & M. L. 

Wolform (Eds.), (pp. 42-46). Methods in Carbohydrate Chemistry: Starch, 4. London: 

Academic Press. 

Song, Y. & Jane, J. (2000). 

Characterization of barley starches of waxy, normal, and high amylose varieties. 

Carbohydrate Polymers, 41, 365-377. 

Sugimoto, Y., Yamashita, Y., Oomori, M., Suzuki, M., Wakita, H., Morishita, M. & Fuwa, 

H. (1998a). 

Developmental changes in the properties of squash starches. Oyo Toshitsu Kagaku: Journal 

of Applied Glycoscience, 45, 11-19. 

Sugimoto, Y., Yamashita, Y., Suzuki, M., Morishita, M. & Fuwa, H. (1998b). 

The properties of starches in pumpkin (Cucurbita moschata DUCH.) during preservation. 

Oyo Toshitsu Kagaku: Journal of Applied Glycoscience, 45, 33-39. 

Takeda, Y., Shibahara, S. & Hanashiro, I. (2003). 

Examination of the structure of amylopectin molecules by fluorescent labeling. Carbohydr. 

Res., 338, 471-475. 

Tang, H., Ando, H., Watanabe, K., Takeda, Y. & Mitsunaga, T. (2001). 

Fine structure of amylose and amylopectin from large, medium, and small waxy barley 

starch granules. Cereal Chemistry, 78, 111-115. 

Wang, Y., White, P., & Pollak, L. (1993). 

Physicochemical properties of starches from mutant genotypes of the Oh43 inbred line. 

Cereal Chemistry, 70, 199-203. 



www.manaraa.com

154 

White, P. J., Abbas, I. R. & Johnson, L. A. (1989) Freeze-thaw stability and refrigerated-

storage rétrogradation of starches. Starch, 41, 176-180. 

Wong, K. S. & Jane, J. (1997a). 

Quantitative analysis of debranched amylopectin by HPAEC-PAD with a post-column 

enzyme reactor. Journal of Liquid Chromatography, 20, 297-310. 

Wong, K. S. & Jane, J. (1997b). 

Recent developments in starch structure analysis using high-performance anion-exchange 

chromatography with pulsed amperometric detection. In R. R. Townsend & A.T. 

Hotchkiss, A. T. (Eds.), (pp. 553-565). Techniques in Glycobiology. New York: Marcel 

Dekker, Inc. 

Wûrsch, P. & Gumy, D. (1994). 

Inhibition of amylopectin rétrogradation by partial beta-amylolysis. Carbohydrate 

Research, 256, 129-137. 

Yoo, S., & Jane, J. (2002a). 

Structural and physical characteristics of waxy and other wheat starches. Carbohydrate 

Polymers, 49: 297-305. 

Yoo, S. & Jane, J. (2002b). 

Molecular weights and gyration radii of amylopectins determined by high-performance 

size-exclusion chromatography equipped with multi-angle laser-light scattering and 

refractive index detectors. Carbohydrate Polymers, 49: 307-314. 

Yoshida, M. (1989). 

Some observations on the structure and starch granules of squash (var. Ebisu). Research 

Bulletin of the University Farm at Hokkaido University, 26, 17-30. 



www.manaraa.com

155 

Yoshii, Y., Arisaka, M., Jou, T., & Hayakawa, T. (1997). 

Physicochemical properties of low-amylose rice. Journal of the Japanese Society for 

Science and Technology, 44, 353-360. 

You, S., Fiedorowicz, M. & Lim, S. T. (1999). 

Molecular characterization of wheat amylopectins by multiangle laser light scattering 

analysis. Cereal Chem., 76, 116-121. 

Yun, S. H. & Matheson, N. K. (1990). 

Estimation of amylose content of starches after precipitation of amylopectin by 

concanavalin A. Starch/Staerke 40, 302-305. 



www.manaraa.com

Table 1 

Iodine affinities, apparent amylose, absolute amylose contents, and amylose content measured using concanavalin A (Con A) for 
squash fruit defatted starches.* 

Cultivar Iodine Affinity Apparent amylose Absolute amylose Amylose (%) content 
whole starch amylopectin fraction content (%)* content (%)# measured by Con A* 

Delica 5.51"" 1.89ab 27.8* 18.2 12.4 
Kurijiman 5.63" 2.35* 28.3" 16.5 12.6 
Lakota 4.45b 1.65b 22.3b 14.0 10.2 
Prizewinner 5.31* 2.73" 26.4* 12.9 7.9 
Sweet Mama 5.02ab 2.33* 24.9* 13.2 9.1 
Warren Scarlet 5.4 lab 1.84* 27.1* 17.9 11.4 
Whangaparoa Crown 5.48ab 1.96* 27.9* 18.0 11.8 

P = 0.03* P = 0.02 P = 0.03 P= 0.007" P = 0.07 

Apparent amylose contents were averaged from two analyses for each of five replicates.; Values were calculated from dividing 
iodine affinity by a factor of 0.199. 
* Absolute amylose contents were averaged from two analyses for each of five replicates.; Values were calculated by subtracting 
iodine affinity for the amylopectin fraction from the iodine affinity for the whole starch, divided by a factor of 0.199. 
* Amylose contents measured by concanavalin A were averaged from two analyses for each of five replicates. 
* Values with different letters denote differences at the 5% level of significance for each comparison between cultivars in the 
respective column. 
* P represents the probability of f-statistic exceeding expected for each comparison between cultivars in the respective column. 
y Conservative Tukey test was unable to detect differences between individual cultivars. 
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Table 2 

Average amylopectin molecular weight, polydispersity, gyration radius and density of squash fruit starches.* 

Cultivar# M*x 10*(g/mol)+ Polydispersity (Mw) Rz (nm)* p (g/mo l/nm3)* 
Delica 2.41 1.44 310 10.7 
Kurijiman 2.03 1.81 294 10.6 
Lakota 3.16 1.21 324 10.8 
Prizewinner 3.22 1.23 317 12.2 
Sweet Mama 2.54 1.30 311 10.6 
Warren Scarlet 2.91 1.35 337 10.1 
Whangaparoa Crown 2.70 1.29 304 12.0 

P = 0.12° P = 0.27 f = 0.11 P = 0.15 

Data were obtained from two injections of all five replicates. 
* Starch samples were dissolved in 90% DMSO solution and precipitated with 5 vol. ethanol; Freshly prepared 
starch aqueous solution (100 |J,L; 0.8 mg/mL) was injected to HPSEC system. 
* weight-average molecular weight. 
* z-average radius of gyration. 
* Density is equal to Mw/Rz

3. 
° P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 3 

Polydispersity and crystallinity of amylopectins from various botanical sources. 

Starch Polydispersity (Mw/M„)* Crystallinity# 

Normal maize 1.60 A 
Waxy maize 1.57 A 
du waxy maize 1.96 A 
sul maize 2.05 A 
sh2 maize 11.16 A 
Barley 1.66 A 
Wheat 1.82 A 
Waxy wheat 1.68 A 
Sweet rice 6.08 A 
Waxy rice 3.28 A 
Cattail millet 4.02 A 
Tapioca 2.12 A 
Mungbean 1.47 A 
Chinese taro 5.42 A 
Amaranth 3.22 A 
Waxy amaranth 4.36 A 
Hylon V maize 2.65 B 
Hylon VII maize 3.78 B 
ae waxy maize 2.03 B 
Potato 1.79 B 
Green leaf canna 2.24 B 
Sweet potato 2.45 C 
Waterchestnut 4.17 c 
Green banana 2.11 c 
Lotus root 3.47 c 
Data were obtained of at least two injections. 

# Based on X-ray diffraction patterns reported by Jane, Wong & McPherson (1997) and Jane 
et al. (1999). 
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Table 4 

Branch chain-length distributions of squash fruit amylopectins*#. 

Cultivar Peak DP Average 

CL 

Percent distribution Highest 
Detectable 
DP 

Cultivar 

I II 

Average 

CL DP 6-9 DP 6-12 
DP 13-

24 
DP 25-36 DP >37 

Highest 
Detectable 
DP 

Delica 13 50 28.1 5.0" 14.9" 40.6" 14.7abc 29.3 72 
Kurijiman 13 48 27.4 5.4ab 15.6" 41.0a" 14.2"° 28.4 76 
Lakota 14 49 27.0 3.8' 12.6" 44.7" 16.5" 25.4 69 
Prizewinner 13 49 26.5 6.1a 16.7" 41.9"" 14.1° 26.2 76 
Sweet Mama 13 48 27.9 5.3"* 15.2" 40.1" 15.0abc 28.8 74 
Warren Scarlet 14 49 26.9 5.4ab 15.4a 40.4" 16.0a" 27.1 68 
Whangaparoa Crown 13 49 27.2 5.5* 15.9" 41.2"" 14.6"' 27.3 72 

P = 0.26* P < 0.0001 P< 0.0001 il p
 

o
 

P = 0.003 P = 0.13 

* Grouping of degree of polymerization (DP) numbers followed that of Hanashiro et al. (1996). 
* Values with different letters denote differences at the 5% level of significance for each comparison between cultivars in the 
respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the respective column. 
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Table 5 

Thermal properties of native squash fruit starches. 

Cultivar* Native starch Cultivar* 
Y» (°Cf+ To (°C) T,(°C) Range (°C)* AH (J/g) 

Delica 63.4" 66.5" 69.7ab 6.3^ 17.3 
Kurijiman 63.5' 66.5" 69.8" 6.3" 16.9 
Lakota 62.9* 66.4' 70.4" 7.5* 16.8 
Prizewinner 60.9^ 65.0* 69.7" 8.8" 15.9 
Sweet Mama 63.5' 66.2' 69.8" 6.3" 17.4 
Warren Scarlet 61.7*= 65.7* 70.4" 8.7" 16.4 
Whangaparoa Crown 60.6= 64.0" 67.7" 7.1* 16.3 

P = 0.0001* f = 0.001 P = 0.006 P < 0.0001 P = 0.26 

Starch samples (~2.0 mg, dsb) and deionized water (-6.0 mg) were used for the analysis; T0, Tp, Tc 

and AH are onset, peak, conclusion temperature, and enthalpy change, respectively. 
* Values were calculated from three analyses for each of five replicates. 
* Range of gelatinization is equal to Te-T0. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column . 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars 
in the respective column. 
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Table 6 

Thermal properties of retrograded squash fruit starches*1. 

Cultivar Native starch 

To CO To CO Tc (°C) % rétrogradation 
Delica 36.3 54.0 64.5 8.1* 46.6* 
Kurijiman 36.6 54.5 64.8 7.8ab 45.8* 
Lakota 35.2 53.3 65.4 8.9" 53.3" 
Prizewinner 36.6 54.8 64.3 6.5b 40.8b 

Sweet Mama 35.1 52.4 65.0 9.5" 54.7" 
Warren Scarlet 36.0 52.6 65.5 8.8* 53.4" 
Whangaparoa Crown 35.6 53.3 65.0 8.2* 49.8* 

P = 0.25* P = 0.31 P = 0.59 P = 0.008 P = 0.002 

* Same starch samples after gelatinization (see Table 5) were left for 7 days at 4°C and rescan using DSC. 
* Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 7 

Pasting properties of squash fruit starches measured by Rapid Visco-Analyzer. 

Cultivar* Peak Viscosity#* Breakdown^ Final Viscosity^ Setback* Pasting Temperature (°C) 
Delica 174.8» 52.2 206.9 84.3 68.8 
Kurijiman 179 2ab 63.1 195.3 79.2 67.8 
Lakota 232.8" 88.7 243.8 99.7 67.2 
Prizewinner 225.1" 76.7 244.3 95.8 66.5 
Sweet Mama 205.2"* 66.6 231.6 93.0 68.4 
Warren Scarlet 176.8" 52.6 217.5 93.2 68.0 
Whangaparoa Crown 173.7b 65.4 193.1 84.6 65.6 

ii p
 

o
 

P = 0.26 P = 0.49 P = 0.70 P = 0.16 

8% (w/w) starch suspension. 
* Viscosity measured in Rapid Visco-Analyzer units (RVU), 1 RVU = 12 centipoise. 
* Values with different letters denote differences at the 5% level of significance for each comparison between cultivars in the 
respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the respective column. 
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Table 8 

Squash fruit isoamylase-debranched amylopectins measured using HPSEC*. 

Cultivar Peak I (%)"* Peak II (%) 

Delica 42.4"» 57.6ab 

Kurijiman 38.7b 61.3b 

Lakota 46.7" 53.3" 
Prizewinner 47.1= 52.9" 
Sweet Mama 47.3" 52.7" 
Warren Scarlet 47.3" 52.7" 
Whangaparoa Crown 43.(f 57.0ab 

f <0.0001 + 

Peak I and II represent long (DP > 26) and short (DP < 26) amylopectin chains respectively. 
Values represent proportion of long and short amylopectin chains. 
u Values were obtained from two analyses for each of five replicates. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars 
in the respective column. 
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Table 9 

Correlation coefficients (r x 100) for selected squash starch structural and functional properties. 

APA A b a Accc Mw PMw Rz DS CL DP 13.24 DP25 
-36 DP>3, DP>2 

6 
To 

RO 
G AH PV BK FV 

ApA 100 
Ab& 68 100 
Aon 55 89" 100 
Mw -58 -44 -68 100 

59 39 65 -86** 100 
Rz -44 -8 -33 73* -61 100 
DS 11 -25 -41 38 -38 -29 100 
CL 17 28 43 -72* 34 -44 -44 100 
DP13.24 -72* -39 -24 57 -36 22 21 -46 100 
DP25-36 -69 -1 0 46 -42 74* -53 -13 49 100 
DP,37 57 39 46 -85" 56 -52 -36 87" -80* -46 100 

DPS26 -64 -53 -76* 82* -86" 80* 3 -38 20 53 -50 100 
T„ -21 -9 26 -59 49 -25 -72' 72* -6 14 53 -29 100 
ROG -14 -17 -47 81" -51 74* 27 -89" 25 25 -74" 62 -72* 100 
AH -15 5 31 -61 32 -28 -64 92" -23 13 69 -23 91" -84* 100 
PV -84* -90" -92' 68 -55 30 27 -44 72* 28 -67 60 -1 34 -17 100 
BK -78* -75' -59 58 -44 6 41 47 87" 25 -75" 34 -11 21 -25 89" 100 
FV -80* -83" -87" 76* -66 57 9 -40 51 39 -58 81* -1 48 -14 92" 66 100 
SB -83* -65 -76* 88" -81* 77* 5 -49 55 62 -71 92" -19 61 -25 81* 62 93" 
PT -2 8 22 -45 35 11 -83* 66 -37 18 62 -4 83' 40 78* -19 -47 3 

ApA = apparent amylose content, AbA = absolute amylose content, Aeon = amylose content measured by concanavalin A, Mw = weight-average amylopectin molecular weight, 
PMw = polydispersity (Mw/M„), R2 = gyration radius, OS = density, CL = average amylopectin branch chain-length, DPI3.24 = proportion of amylopectin branch chain-lengths DP 13-24, 
DP25.36 = proportion of amylopectin branch chain-lengths DP 25-36, DPa37 = proportion of amylopectin branch chain-lengths DP > 37, DP>26 = proportion of amylopectin branch chain-lengths 
DP > 26 measured by HPSEC, T0 = onset gelatinization temperature, ROG = range of gelatinization temperature, AH = enthalpy change of gelatinization, PV = peak viscosity, 
BK = breakdown, FV = final viscosity, SB = setback, PT = pasting temperature. * = 0.05 and ** = 0.01 level of significance. 
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Figure 1. Scanning electron micrographs of Delica (A), Kurijiman (B), Lakota (C), 
Prizewinner (D), Sweet Mama (E), Warren Scarlet (F) and Whangaparoa Crown (G) squash 
fruit starches (scale bar =10 |xm). 
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Fig. 2. X-ray diffraction patterns of Delica, Kurijiman, Lakota, Prizewinner, Sweet Mama, 
Warren Scarlet and Whangaparoa Crown squash fruit starches. 
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Fig. 3a. Relative peak area distributions of Delica, Kurijiman, Lakota and Prizewinner squash fruit amylopectins analyzed by 
using a HPAEC-ENZ-PAD. Error bars represent standard error of the mean for each individual DP from two analyses of five 
replicates. DP = Degree of polymerization. 
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Fig. 3b. Relative peak area distributions of Sweet Mama, Warren Scarlet and Whangaparoa Crown squash fruit amylopectins 
analyzed by using a HPAEC-ENZ-PAD. Error bars represent standard error of the mean for each individual DP from two 
analyses of five replicates. DP = Degree of polymerization. 
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Fig. 4. Rapid Visco-Analyser pasting profiles of Whangaparoa Crown, Delica and Lakota squash fruit starch compared 
with normal maize and potato starches (8.0% dsb, w/w). 
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CHAPTER 2. ROLE OF STARCH STRUCTURE IN TEXTURE OF SQUASH AND 
STARCH FUNCTIONAL PROPERTIES. I. STRUCTURAL PROPERTIES OF 

STARCH EXTRACTED FROM WINTER SQUASH FRUIT {Cucurbita maxima D.) 
AT HARVEST AND AFTER STORAGE. 

A paper to be submitted to Journal of Agricultural and Food Chemistry 

David G. Stevenson and Jay-lin Jane* 

Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, 
USA. 

"Corresponding author (phone 1 515 294 9892; fax 1 515 294 8181; e-mail 
i i ane@iastate.edu). 

ABSTRACT 

Starch from fruit of twelve winter squash cultivars (Cucurbita maxima D.) was extracted at 

harvest, 5 or 10 weeks storage. Squash cultivars could be classified into three groups based 

on harvest starch dry weight content: one cultivar < 1%, six cultivars between 11 and 18%, 

and five cultivars, all buttercups or related crosses, had > 50%. Starch granules exhibited 

continuous size distribution, with most granule diameters 2-11 ^m. After storage, the 

proportion of small granules decreased and some cultivars had granule remnants. Squash 

starches displayed B-type X-ray patterns and high iodine affinities for whole and 

amylopectin fraction at harvest and after storage. Absolute amylose content ranged from 

10.8-21.1% at harvest and tended to decrease after 10 weeks storage. Average amylopectin 

molecular weight (Mw) at harvest ranged from 2.83-5.52 x 108 g/mol. Mw increased after 5 

weeks storage, suggesting that amylases prioritized hydrolyzing smaller amylopectin. 

Amylopectin polydispersity was extremely low after 5 and 10 weeks storage. 

KEYWORDS: Starch structure; winter squash; buttercup squash; pumpkin; 
Cucurbita maxima', postharvest; storage 

mailto:ane@iastate.edu
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INTRODUCTION 

Starch is the abundant storage carbohydrate in plants. Starch structural and functional 

properties have been studied extensively from a wide variety of botanical sources. However 

starches from the plant family Cucurbitaceae have largely been ignored, and in particular, 

Cucurbita, the genus primarily comprising of squash and pumpkins, has received little 

attention. Hurst et al. (1) investigating three buttercup squash cultivars (Cucurbita maxima 

D.) reported considerably high starch levels with 58-66% of dry matter consisting of starch. 

Corrigan et al. (2) classified squash cultivars into two groups according to their starch 

contents. High-starch group consisted entirely of buttercup squash cultivars, whereas the 

low-starch group included cultivars such as Crown, Hubbard and Scarlet Warren. 

Sugimoto et al. (3) investigated starch characteristics of two squash, one C. maxima 

D., and one C. moschata D. during fruit (pepo) development. Squash starch was shown to 

exhibit B-type X-ray diffraction pattern, granule diameter ranging from 2.9-8.8 |xm and 

amylose content ranging from 14-23%. 

Starch granule characteristics have been studied from squash fruit grown in New 

Zealand, Mexico and Japan (4). Starch granule diameters were reported to have much wider 

range (3-35 p,m) than reported by Sugimoto et al. (3). Starch was also reported to be located 

primarily in specific cellular layers closer to the squash fruit exterior. 

Recently, we have characterized the starch structural properties from fruit of seven C. 

maxima squash cultivars (Chapter 1). Squash starches exhibited B-type X-ray diffraction 

patterns and had continuous granule size distribution. Squash starches had low absolute 

amylose contents and small amylopectins (2-3 x 108) with very low polydispersity and 
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average chain-lengths of DP 27-28. Onset gelatinization temperature (T0) of squash starches 

ranged from 60.6°C to 63.5°C, and enthalpy of gelatinization (AH) was very high for both 

native and retrograded starch. Squash starches were shown to have high peak viscosity, final 

viscosity and setback, and pasting temperature ranging from 65.6°C to 68.8°C. 

In our present study, we investigate storage effect on structural properties of twelve 

winter squash fruit starches, belonging to the species Cucurbita maxima, extracted from fruit 

at harvest and after 5 or 10 weeks of storage. We will correlate the starch structural 

properties (Chapter 5) with research to be published later on the starch functional properties 

(Chapter 3), and the textural attributes of raw and cooked squash fruit (Chapter 4). 

MATERIALS AND METHODS 

Plant Material. Twelve squash cultivars were planted in summer, 2000, at an Iowa 

State University farm site 1.7 miles south of Ames, Iowa (geographical location 41° 58' 

57.5" N, 93° 38' 22.9"), in a randomized complete block (8.23 m x 3.05 m blocks) with 3 

replicates (36 plants/replicate). Normal crop husbandry was followed as required. Climatic 

conditions during the 2000 growing season can be found in Chapter 7. Squash cultivars 

studied were four buttercups (Cha Cha, Delica, Kurijiman and Sweet Mama), one cross 

between a buttercup, Green Delicious and a non-buttercup, Table Queen (Hyvita), two 

Halloween-type (Big Max and Rouge Vif D'Etampes), one Hubbard-type (Warren Scarlet, 

also known as Red Warren), one Crown-type (Whangaparoa Crown), one Native American 

Indian squash (Lakota), and two non-commercially developed squash, one from Burkina 

Faso (Yogorou) and one from the Bolivian/Peruvian border (Zapallo Macre). Seeds were 

purchased for Kurijiman, Warren Scarlet and Whangaparoa Crown from Webling and 
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Stewart Ltd., Petone, New Zealand, for Delica from Yates New Zealand Ltd., Onehunga, 

New Zealand, for Sweet Mama from Henry Field Seed & Nursery Co., Shenandoah, IA, for 

Lakota and Big Max from W. Atlee Burpee & Co., Warminster, PA, for Rouge Vif 

D'Etampes from J.W. Jung Seed Co., Randolph, WI, and for Cha Cha from Johnny's Select 

Seeds Co., Winslow, ME. Hyvita was received as a gift from Dr Henry Munger, Department 

of Plant Breeding, Cornell Univeristy, Ithaca, NY. Yogorou and Zapallo Macre were both 

obtained from the USD A, ARS Plant Genetic Resources Unit, Cornell University, Geneva, 

NY with the accession numbers being PI 490352 and PI 298818, respectively. Squash fruit 

maturity was adjudged when stalks became woody (5), and this stage had been previously 

shown to have the highest starch content (6). Squash fruit were stored at 12°C and low 

humidity for 5 or 10 weeks as these conditions have been previously determined to be 

optimum for squash (7). 

Starch Isolation and Quantification, and Water Content. Starch was isolated 

from squash fruit using method reported by Badenhuizen (8) with slight modification (9) and 

further modification in this study. Four randomly selected fruit per replicate, peeled and 

deseeded, were used for starch isolation. Squash fruit was ground through a meat grinder 

("The Butcher Shop", item#402, Krups North America Inc., Peoria, IL), due to its hardness, 

and immediately blended in 0.3% (w/v) sodium metabisulfite and then filtered through 106 

pm mesh. Filtrate was washed with 10% toluene in 0.1 M NaCl, and this step was found to 

be critical in obtaining high starch yields. It was observed that during toluene/salt washes, 

considerable amount of starch is removed with the lipid/protein toluene layer. Toluene/salt 

waste removed after each wash was collected and allowed to stand for at least 12 h, in which 
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time further starch had formed a sediment. Removal of starch in toluene/salt waste may 

simulate losses of starch in commercial extraction, but our objectives were to investigate role 

of starch structure in functional properties of a food system in which starch was not being 

extracted. Therefore it was important for meaningful analysis to extract most of the 

endogenous starch. Collection of starch sediment from toluene/salt wash was repeated until 

little starch was obtained, which ranged from 5-20 times. Starch yield from the toluene/salt 

waste that is usually discarded ranged from 8-50% of the total starch yield and was almost 

always at least 15%. We did not investigate whether the starch obtained from toluene/salt 

waste differed in granule size, shape or physicochemical properties from the remainder. 

Toluene/salt washed starch was washed three times with distilled water, twice with ethanol, 

and then recovered by filtration using Whatman No. 4 filter paper. Purified starch cake was 

dried in a convection oven at 35°C for 48 h. Starch yields varied due to cultivar and storage 

time, therefore results presented in this study are for the cultivar x storage treatments in 

which sufficient starch was present to conduct analysis. Water content of squash fruit, with 

skins and seeds removed, was determined by freeze-drying. Total starch content of freeze-

dried squash fruit powders, measured in duplicate, was determined using total starch assay 

kit (Megazyme International Ireland Ltd., Wicklow, Ireland), based on AOAC method 

996.11, AACC method 76.13 and ICC standard method No. 168, in which fruit powders are 

hydrolyzed with a-amylase and amyloglucosidase, and subsequent glucose content 

determined using glucose oxidase-peroxidase. Internal standards of com starch were added 

to samples to check quantitation and recovery of starch. 
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Starch Granule Morphology by Scanning Electron Microscopy. Starch granules, 

spread on silver tape and mounted on a brass disk, were coated with gold/palladium (60/40) 

for each cultivar. Sample images were observed at 1500x magnification under a scanning 

electron microscope (JOEL model 1850, Tokyo, Japan) following the method of Jane et al. 

(10). 

Crystalline Structure by X-ray Diffractometry. Crystallinity of starch granules 

was studied using X-ray diffractometry. X-ray diffraction patterns were obtained with 

copper, Ka radiation using a Siemens D-500 diffractometer (Siemens, Madison, WI). 

Analysis was conducted following procedure of Song and Jane (11). Degree of crystallinity 

was calculated based on method of Hayakawa et al. (12). The following equation was used 

to determine percent crystallinity: 

Crystallinity (%) = Ac/(Ac + Aa) x 100 

where Ac = crystalline area on the X-ray diffractogram and Aa = amorphous area on the X-

ray diffractogram. 

Molecular Weight Distribution and Gyration Radius of Amylopectin by High-

Performance Size-Exclusion Chromatography (HPSEC). Weight-average molecular 

weight and z-average gyration radius of amylopectin were determined using high-

performance size-exclusion chromatography equipped with multi-angle laser-light scattering 

and refractive index detectors (HPSEC-MALLS-RI). Starch samples, duplicate 

measurements of each replicate for all cultivars and storage times, were prepared as 

described by Yoo and Jane (13). The HPSEC system consisted of a HP 1050 series isocratic 
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pump (Hewlett Packard, Valley Forge, PA), a multi-angle laser-light scattering detector 

(Dawn DSP-F, Wyatt Tech. Co., Santa Barbara, CA) and a HP 1047A refractive index 

detector (Hewlett Packard, Valley Forge, PA). To separate amylopectin from amylose, 

Shodex OH pak KB-G guard column and KB-806 and KB-804 analytical columns (Showa 

Denko K.K., Tokyo, Japan) were used. Operating conditions and data analysis are described 

by Yoo and Jane (14), except flow rate was 0.4 mL/min and sample concentration was 0.8 

mg/mL. 

Absolute Amylose Contents by Potentiometric Autotitration. Absolute amylose 

content of starch was determined following the procedure of Lu et al. (15). Analysis was 

based on iodine affinities of defatted whole starch and amylopectin fraction using a 

potentiometric autotitrator (702 SM Titrino, Brinkmann Instrument, Westbury, NY). Starch 

samples were defatted using a 90% dimethyl sulfoxide (DMSO) solution, followed by 

alcohol precipitation. Determination of amylose content was duplicated for each squash 

cultivar replicate at each storage time. 

Amylopectin Branch Chain-Length Distribution by High-Performance Anion-

Exchange Chromatography (HPAEC) and by HPSEC. Amylopectin was fractionated by 

complexing amylose with «-butanol as described by Schoch (16). Amylopectin (2 mg/mL) 

was defatted in boiling 90% DMSO for 1 h, followed by stirring for 24 h and then 

debranched using isoamylase (EC 3.2.1.68 from Pseudomonas amyloderamosa) (EN102, 

Hayashibara Biochemical Laboratories Inc., Okayama, Japan) as described by Jane and Chen 

(17). Branch chain-length distribution of amylopectin was determined using an HPAEC 
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system (Dionex-300, Sunnyvale, CA) equipped with an amyloglucosidase (EC 3.2.1.3, from 

Rhizopus mold, A-7255, Sigma Chemical Co., St Louis, MO) post-column, on-line reactor 

and a pulsed amperometric detector (HPAEC-ENZ-PAD) (18). PA-100 anion exchange 

analytical column (250 x 4 mm, Dionex, Sunnyvale, CA) and a guard column were used for 

separating debranched amylopectin samples. Gradient profile of eluents and operating 

conditions were described previously (19). Branch chain-length distribution of amylopectin 

was also analyzed to determine extra-long branch-chains by using a HPSEC equipped with a 

RI detector. Operating conditions have been described earlier (19), except flow rate was 0.4 

mL/min, analytical column used for analysis was Shodex OH pak SB-803HQ (Showa Denko 

K.K., Tokyo, Japan) and sample concentration was 0.8 mg/mL. HPAEC-ENZ-PAD and 

HPSEC analysis were quadruplicated for the former and duplicated for latter analysis for 

each replicate of each cultivar at each storage time. 

Data analysis. All statistical significance tests were calculated using SAS (20) and 

applying Tukey difference test (21) at the 5% level of significance. 

RESULTS AND DISCUSSION 

Water and Starch Content. Water content of squash fruit (excluding seeds and 

skins) was significantly different between cultivars at harvest and after both storage times (P 

< 0.0001 for all) (Table 1). Squash cultivars that had fruit with greater than 88% water at 

harvest, had no or slight increases in water content after 10 weeks of storage. The four 

buttercup squash cultivars, plus the closely related buttercup-cross (Hyvita) had the lowest 

water content at harvest, and Cha Cha, Hyvita and Sweet Mama had the greatest increase in 

water content during storage. Fruit from some squash cultivars had very little dry matter, 
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with fruit from the five cultivars that had above 91% water content after 10 weeks of storage 

having much heavier fruit weight than the lighter buttercups that were all below 86% water 

(based on obvious differences in fruit weight during handling of fruit and not from weighing 

on a balance). 

Water content of squash fruit has been reported previously. Corrigan et al. (2) 

reported similar findings of water content for Warren Scarlet and Delica, but considerably 

lower water content was reported for Kurijiman, Sweet Mama and Whangaparoa Crown. 

Hurst et al. (1) reported lower water content (76.5%) for Delica. Despite Corrigan et al. (2) 

finding higher dry matter content for three squash cultivars, their reported starch content of 

the two buttercup cultivars was substantially lower than what we report in our study. 

Starch content of squash fruit (excluding seeds and skins) between the cultivars was 

significantly different at harvest and after both storage times (P < 0.0001 for all). At harvest, 

squash cultivars could be classified into three distinct groups based on their starch content: (i) 

squash cultivars with less than one percent (dry weight basis (db)) starch (Big Max), (ii) 

squash cultivars with a medium percentage (11-18% db) of starch (Lakota, Rouge Vif 

D'Etampes, Warren Scarlet, Whangaparoa Crown, Yogorou and Zapallo Macre) and (iii) 

squash cultivars with high percentage (> 50% db) of starch, which consisted of the four 

buttercups and closely related Hyvita (Cha Cha, Delica, Hyvita, Kurijiman and Sweet 

Mama). 

Starch contents for Delica, Kurijiman, Sweet Mama, Warren Scarlet and 

Whangaparoa Crown have been previously reported for squash grown in New Zealand (2), in 

which only Whangaparoa Crown had starch content comparable to the levels we report 

(16.3% db). The starch contents reported for Warren Scarlet (3.3% db), Delica (13.4% db), 
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Kurijiman (41.4% db) and Sweet Mama (41.2% db), were all substantially lower than what 

we found. This is surprising considering Wilhelm et al. (22) has shown that starch synthase 

enzymes are down regulated when temperature exceeds 25°C, and Iowa experiences 

considerably higher durations above 25°C relative to Levin, New Zealand. In four years of 

growing squash, we have not observed Delica with such low starch content as reported by 

Corrigan et al. (2), and we suspect there were unfavorable environmental conditions during 

their growth. Further support of this is provided by Hurst et al (1) who reported Delica, 

grown at same research center as that reported by Corrigan et al. (2), had 61% of its dry 

matter as starch, which is in agreement with our results. 

Additional explanation for the large differences in starch content reported for the 

same cultivar could be due to high variability in starch content of individual squash fruit. In 

our study, we observed large variation in starch content for Warren Scarlet, Yogorou and 

Zapallo Macre. This large variation meant that pooled variance analysis was ineffective in 

determining all significant differences between squash cultivars for starch content. For 

example, at harvest, the three replicates of Rouge Vif D'Etampes and Big Max ranged from 

14.2-14.7% and 0.7-0.9%, respectively, yet they were not significantly different due to the 

contribution to pooled variance from the highly variable starch content for the replicates of 

Warren Scarlet and Yogorou. This necessitated use of the Friedman two way analysis of 

variance by rank test (23) in an attempt to establish significant differences in starch content 

between cultivars, but this test could not establish any new differences among cultivars. 

Granule Morphology. Squash starches exhibited continuous granule size 

distribution. Squash granules were primarily 1.5-3 |am, 4.5-6.5 gm or 9-12 |im in diameter 
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(Figure la and lb), except Rouge Vif D'Etampes which had few granules above 8 |im in 

diameter. A greater proportion of large starch granules were spherical, whereas medium and 

small size granules tended to be irregular. Many large starch granules were dome-shaped 

with one side flattened, often with a small indentation, and this may indicate the presence of 

compound granules. Larger indentations were mainly observed on medium size granules (5-

8 ]im in diameter). Granule indentations are usually attributed to collision of expanding 

spherulites (24), which would occur for compound starch granules. The endocarp region of 

squash fruit flesh has been reported to have compound starch granules present (4). 

Previous study of starch from two squash cultivars during development and at 

harvest, including Ebisu (close genetic relative to Delica), found average granule size to be 

7.0-7.5 pm, with low size variation (3). However, these researchers studying these same 

squash during storage presented scanning electron micrographs that do exhibit wider 

variation in starch granule size distribution with similar ranges in granule diameters as we 

report (25). The greater variation in granule size distribution that we observed for squash 

starch, extracted from fruit at harvest, compared with that of Sugimoto et al. (3), could be due 

to different guidelines used to adjudge harvest maturity. Yoshida (4) reported starch granule 

diameters up to 35 (am for squash grown in New Zealand, Mexico and Japan, but we rarely 

observed granules wider than 15 |im and no granules exceeded 18 (xm. 

Squash cultivars with high levels of starch after 5 and 10 weeks storage (buttercups 

plus Hyvita) showed little increase in partially degraded starch granules (Figure 2). 

However there was an overall increase in average starch granule size after 5 and 10 weeks, 

because of a reduction in granules less than 3 jam in diameter and increasing abundance of 

granules with diameters of 6-9 jam. Squash cultivars that had rapid starch degradation after 5 
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weeks of storage showed extensive granule degradation, with many granules being "bowl-

shaped" (Figure 2C). 

Crystalline Structure. Squash starches all exhibited typical B-type X-ray diffraction 

patterns (Figure 3), with a strong peak at 26 = 17.2°, another peak at 29 = 5.6°, and a split 

peak at 29 = 22-24°. Kurijiman , Warren Scarlet and Whangaparoa Crown were previously 

reported to have an additional peak at 29 = 28.2° (5), but this peak was not observed in any 

of the squash cultivars in this study. Percentage crystallinity of starch extracted from fruits at 

harvest for Cha Cha, Delica, Hyvita, Kurijiman, Lakota, Rouge Vif D'Etampes, Sweet 

Mama, Warren Scarlet, Whangaparoa Crown, Yogorou and Zapallo Macre, calculated based 

on X-ray diffractograms, was 43.2, 40.7, 38.4, 40.0, 48.2, 40.1, 41.3, 41.0, 35.7, 41.1, and 

41.4 respectively. After 5 weeks storage, percentage crystallinity for Cha Cha, Delica, 

Hyvita, Kurijiman, Lakota and Sweet Mama was 40.0, 39.0, 36.5, 40.8, 33.9 and 39.0 

respectively, and after 10 weeks storage, for Cha Cha, Delica and Kurijiman, percent 

crystallinity was 40.1, 47.7 and 36.7 respectively. Starch percent crystallinity decreased for 

most squash cultivars after 5 weeks storage. 

Amylose Content. Iodine affinities for defatted whole starch and the corresponding 

apparent amylose contents were not significantly different at harvest, but were significant at 

both 5 and 10 weeks storage (P < 0.0001) (Table 3,4 and 5). Apparent amylose content was 

higher for the high-starch squash cultivars at both 5 and 10 weeks storage (Table 4 and 5). 

Iodine affinities of both whole starch and amylopectin fraction, from fruit at harvest, in this 

study were considerably higher than reported previously for squash (Chapter 1), and this is 

close to the highest values reported for native starches (26). Differences could be seasonal 

effects as Tester et al. (27) has shown wheat grown at 4°C higher had apparent amylose 
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contents five percent higher (i.e. from 26 to 31%), and Araki et al. (28) found 3% difference 

in wheat apparent amylose contents between two consecutive seasons. Additionally, cereal 

starches have received extensive breeding improvements over many centuries to eliminate 

genetic variation due to climate and other environmental conditions, whereas squash have 

received little attention from plant breeders. Furthermore, apparent amylose is a measure of 

two components, so variation in amylopectin branch chain-length distribution could also be 

contributing to the variation. Absolute amylose contents reported in this study were similar 

to the previous study, except for Sweet Mama (Chapter 1), suggesting differences in 

proportion of long-chain amylopectins are contributing to variation in apparent amylose 

content. Absolute amylose contents of high-starch cultivars were higher than remaining 

cultivars at harvest and 5 weeks storage. Sweet Mama and Kurijiman had substantially 

higher absolute amylose contents after 5 weeks storage that was not observed in any other 

cultivar. Since amylose content has been shown to be higher in larger diameter granules 

(29), Sweet Mama and Kurijiman may have had more small granules degraded after 5 weeks 

storage relative to other squash cultivars. 

Amylopectin Molecular Weight and Size. Average molecular weight, 

polydispersity, and gyration radius of squash amylopectins, from fruit at harvest, are shown 

in Table 6. All squash starches at harvest had amylopectins of greater molecular weight than 

reported previously for squash amylopectins (Chapter 1), but amylopectin polydispersity was 

slightly higher in this study. Average molecular weight, polydispersity, gyration radius and 

density of amylopectins for the squash cultivars were not significantly different. 

After 5 weeks storage, average amylopectin molecular weight increased for all 8 

squash cultivars except Lakota (Table 7), implying that during storage of squash fruit, there 
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is selective degradation of smaller amylopectin molecules. Polydispersity of amylopectins, 

after five weeks storage, decreased to values lower than reported previously for any other 

starches (Chapter 1), and the uniformity of squash fruit amylopectin is remarkable for 

biological molecules of such magnitude. The increased uniformity in amylopectin weight is 

most likely due to the selective degradation of smaller amylopectin molecules, possibly 

because squash amylases were unable to hydrolyze a high proportion of high-molecular 

weight amylopectins located primarily in larger diameter granules. Decrease in number of 

small granules (< 3gm) observed after 5 or 10 weeks storage (Figure 1 and 2) suggests that 

amylopectins of small molecular weight are predominantly in the smaller starch granules. 

Larger-weight amylopectins would proportionally be less degraded because they are in larger 

size granules which the amylases did not degrade. If this scenario is true, we could not 

determine if squash amylases are impeded from entering large granules to degrade high 

molecular weight amylopectins just as effectively as low molecular weight amylopectins, or 

whether high molecular weight amylopectins contribute to the resistance of the granule, 

making it difficult for amylases to tunnel into the hilum. Similar size distribution of 

amylopectins in all starch granule sizes has been reported (30). Li et al. (29) has reported 

higher average amylopectin branch chain-length in smaller granules, but that does not 

necessarily translate to higher molecular weight, and in contrast, Tang et al. (31) reported 

higher average amylopectin branch chain-length in larger granules. 

Average molecular weight and density were higher, and polydispersity was lower for 

squash amylopectins after 10 weeks storage compared to that at harvest (Table 8). Gyration 

radius of squash starches after 10 weeks storage, like at harvest, were not significantly 

different despite significant differences observed after 5 weeks storage. Gyration radius 
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increased for all squash amylopectins during storage, except Lakota and Sweet Mama, 

providing further support that smaller amylopectins are preferentially degraded after harvest. 

Squash starch gyration radius was narrower than reported previously for all other B-type 

starches, except ae wx maize which was comparable in size (14). 

Debranched Amylopectin Chain Distribution. Amylopectin branch chain-length 

distribution of squash starches, from fruit at harvest, is shown in Table 9. Squash starches 

exhibited typical B-type starch characteristics of high proportion of long amylopectin chains 

(DP >37) and average amylopectin branch chain-length. For fruit at harvest, the only 

significant difference observed among the squash cultivars was average amylopectin branch 

chain-length (P = 0.002), with branch chains of Warren Scarlet significantly shorter than Cha 

Cha, Delica, Sweet Mama, Whangaparoa Crown and Yogorou. Chromatograms of 

amylopectin branch chain-length distribution for the 12 squash cultivars are shown in Figure 

4a, 4b and 4c also illustrate the lack of long amylopectin chains for Warren Scarlet. Most 

squash cultivars have similar amylopectin chain-length distribution chromatograms, but the 

two non-commercially available squash had starches with distinct chromatograms. The 

peculiar chromatogram of Zapallo Macre is due to high variability in fruit size, shape and 

color of this cultivar, in which all fruit had starch, and further on, amylopectin, extracted 

separately, and fruit also had variability in amylopectin size distribution which when 

combined results in the unusual size distribution. Yogorou amylopectins had relatively high 

amounts of intermediate chain-lengths compared to all other squash cultivars except Zapallo 

Macre, with no anomalous circumstances to explain this difference. 

After 5 weeks storage, proportion of amylopectin branch chain-lengths of DP > 37 

decreased for all squash cultivars, except Kurijiman, and proportion of very short chains (DP 
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6-9) increased for all cultivars, except Hyvita (Table 10). For amylopectin from fruit stored 

5 weeks, Kurijiman had significantly higher proportion of amylopectin branch chain-lengths 

of DP > 37 and lower proportion of DP 13-24 than Hyvita. Average amylopectin branch 

chain-length for Kurijiman was significantly longer than Delica, Hyvita and Zapallo Macre 

(P = 0.004). Chromatograms of amylopectin branch chain-length distribution for most 

squash cultivars is similar after 5 weeks storage and chromatogram of Zapallo Macre now 

has normal appearance (Figure 5a and 5b). All squash cultivars, except Hyvita, had higher 

proportion of amylopectin branch chain-lengths of DP > 37 after 10 weeks storage (Table 

11) than at harvest. 

For fruit stored 10 weeks, Cha Cha and Delica had significantly higher proportion of 

amylopectin branch chain-lengths of DP > 37 than Hyvita (P = 0.02). Kurijiman and Delica 

had significantly lower proportion of amylopectin branch chain-lengths of DP 25-36 than 

Hyvita (P = 0.01). Cha Cha had significantly lower proportion of amylopectin branch chain-

lengths of DP 6-12 than Hyvita (P = 0.04). Average amylopectin branch chain-length of Cha 

Cha and Sweet Mama was significantly longer than Hyvita (P = 0.01). Amylopectin branch-

chain length distribution separated, to some extent, the buttercup-cross Hyvita from the 

buttercup cultivars. Chromatograms of amylopectin branch chain-length distribution for fruit 

stored 10 weeks, show the greater proportion of longer amylopectin chain-lengths compared 

to at harvest, and Cha Cha and Hyvita have a slight shoulder at DP 25-33 relative to the 

chromatograms of amylopectins from fruit at harvest (Figure 6a and 6b). Amylopectin 

average molecular weight increased and amylopectin polydispersity decreased after 10 weeks 

storage, most likely attributed to higher proportion of long amylopectin branch chains. 
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Table 1 

Water content (%) of squash fruit at harvest and after 5 or 10 weeks storage at 12°C*. 

Cultivar Harvest'2 5 weeks 10 weeks 
Big Max 94.2* 94.9" 95.5" 
Cha Cha 71.8d 76.6e 77.4e 

Delica 80.1° 79 lde 81.5de 

Hyvita 84.4bc 87.11* 88.6^ 
Kurijiman 79.0cd 78.7* 81.8de 

Lakota 89.5ab 90.3* 90.8* 
Rouge Vif D'Etampes 94.3" 93.7" 95.2" 
Sweet Mama 79.4e 82.6^ 85.9^ 
Warren Scarlet 88.9* 90.4* 91.1* 
Whangaparoa Crown 91.0ab 93.5" 92.4* 
Yogorou 92.3" 92.2* 91.2* 
Zapallo Macre 88.4* 90.5* 89.3^ 

P< 0.0001* P < 0.0001 P< 0.0001 

Water contents were averaged from three replicates. 
* Values with different letters denote cultivar differences at the 5% level of significance for each 
comparison between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between 
cultivars in the respective column. 
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Table 2 

Starch content (% dry weight) of squash fruit at harvest and after 5 or 10 weeks storage at 12°C*. 

Cultivar Harvest" 5 weeks 10 weeks 
Big Max 0.8" 0.2= 0.3d 

Cha Cha 61.2" 33.3" 34.9" 
Delica 56.7" 33.0" 21.0bc 

Hyvita 54.4" 12.5"= 6.5" 
Kurijiman 55.2" 34.3" 24.7* 
Lakota 17.6" 7.0C 2.8d 

Rouge Vif D'Etampes 14.5" 0.6" 0.6d 

Sweet Mama 52.3" 20.2b 10.2=^ 

Warren Scarlet 17.4b 2.7= l.ld 

Whangaparoa Crown 14.2" 0.8= 1.7d 

Yogorou 11.3b 0.3= 1.2d 

Zapallo Macre 14.7" 3.6= 0.9d 

P< 0.0001* P< 0.0001 P < 0.0001 
Starch contents were averaged from two duplicates of each of three replicates. 

* Values with different letters denote cultivar differences at the 5% level of significance for 
each comparison between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between 
cultivars in the respective column. 
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Table 3 

Iodine affinities, apparent amy lose and absolute amy lose contents for squash fruit defatted starches at harvest.* 

Cultivar 
Iodine Affinity 

i j ,  - »  a m y l o p e c t i n  
whole starch ' f. 

fraction 

Apparent 
amylose 

content (%)* 

Absolute amylose 

content (%)# 

Cha Cha 7.50 3.88"*° 37.7 18.2abc 

Delica 7.27 3.89"** 36.5 17.0abc 

Hyvita 6.70 3.68** 33.7 18.3*^ 
Kurijiman 6.89 2.92= 34.6 20.0ab 

Lakota 6.44 3.84abc 32.4 13. l1* 
Rouge Vif D' Etampes 6.91 4.76* 34.7 10.8= 
Sweet Mama 7.71 3.51ab 38.7 21.1* 
Warren Scarlet 7.37 4.05bc 37.0 16.7abc 

Whangaparoa Crown 7.16 3.78^ 36.0 17.0abc 

Yogorou 7.44 4.09ab 37.4 16.8abc 

Zapalto Macre 6.88 3.75bc 34.6 15.7abc 

f = 0.09* P = 0.0006 P = 0.09 f = 0.008 

Apparent amy to se contents were averaged from two analyses for each of three replicates.; Values were 
calculated from dividing iodine affinity by a factor of 0.199. 
* Absolute amy to se contents were averaged from two analyses for each of three replicates.; Values were 
calculated by subtracting iodine affinity for the amylopectin fraction from the iodine affinity for the whole 
starch, divided by a factor of 0.199. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column. 
* P represents the probability of ̂ -statistic exceeding expected for each comparison between cultivars in 
the respective column. 
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Table 4 

Iodine affinities, apparent amylose and absolute amylose contents for squash fruit defatted starches extracted 
from fruit stored for 5 weeks.* 

Cultivar Iodine Affinity Apparent amylose Absolute amylose 
whole starch amylopectin fraction content (%)* content (%)# 

Cha Cha 7.43* 4.12* 37.3* 16.6* 
Delica 6.99* 3.27*= 35.1* 18.7** 
Hyvita 6.54* 4.02* 32.9* l2Jcde 

Kurijiman 7.04* 1.58d 35.4* 27.5* 
Lakota 4.94cd 2.29^ 24.8^ 13J*k 

Sweet Mama 6.35* 1.24d 31.9* 25.6* 
Warren Scarlet 4.08d 1.78^ 20.5" 11.5de 

Zapallo Macre 5.52*= 3.79* 27.7bc 8.7' 
P = < 0.0001* f = <0.0001 P = < 0.0001 f = <0.0001 

Apparent amylose contents were averaged from two analyses for each of three replicates.; Values were 
calculated from dividing iodine affinity by a factor of 0.199. 
* Absolute amylose contents were averaged from two analyses for each of three replicates.; Values were 
calculated by subtracting iodine affinity for the amylopectin fraction from the iodine affinity for the whole 
starch, divided by a factor of 0.199. 
* Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 5 

Iodine affinities, apparent amylose and absolute amylose contents for squash fruit defatted 
starches extracted from fruit after 10 weeks storage.* 

Cultivar 
Iodine Affinity 

Apparent 
amylose 

Absolute 
amylose 

whole starch 
amylopectin 

fraction 
content (%)* content (%)# 

Cha Cha 7.49" 4.04" 37.6" 17.3* 
Delica 6.06cd 3.35* 30.5*i 13.6* 
Hyvita 6.62"° 3.92* 33.3"° 13.6* 
Kurijiman 6.78" 2.85b 34.1" 19.7" 
Sweet Mama 5.82" 3.56* 29.2d 11.4b 

Zapallo Macre 4.25e 3.00* 21.3' 15.1* 
P = < 0.0001* P = 0.02 f = <0.0001 P = 0.02 

Apparent amylose contents were averaged from two analyses for each of three replicates.; 
Values were calculated from dividing iodine affinity by a factor of 0.199. 
* Absolute amylose contents were averaged from two analyses for each of three replicates.; 
Values were calculated by subtracting iodine affinity for the amylopectin fraction from the 
iodine affinity for the whole starch, divided by a factor of 0.199. 
* Values with different letters denote differences at the 5% level of significance for each 
comparison between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between 
cultivars in the respective column. 
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Table 6 

Average amylopectin molecular weight, polydispersity, gyration radius and density of squash fruit 
starches extracted from fruit at harvest.* 

Cultiva/ Mwx 10* 
(g/mol)* 

Polydispersity (Mw) Rz(nm)* p (g/mol/nm3)* 

Cha Cha 3.46 1.38 309 11.7 
Delica 2.83 1.95 297 10.8 
Hyvita 4.00 1.51 318 12.4 
Kurijiman 3.05 1.82 299 11.4 
Lakota 5.52 1.82 349 13.0 
Rouge Vif D ' Etampes 3.48 1.51 304 12.4 
Sweet Mama 4.15 1.43 329 11.7 
Warren Scarlet 3.73 1.54 317 11.7 
Whangaparoa Crown 3.88 1.41 313 12.7 
Yogorou 3.28 1.69 310 11.0 
Zapallo Macre 3.37 1.95 311 11.2 

P= 0.82° P = 0.75 P = 0.64 P = 0.84 

* Data were obtained from two injections of all three replicates. 
* Starch samples were dissolved in 90% DMSO solution and precipitated with 5 vol. ethanol; Freshly 
prepared starch aqueous solution (100 j-iL; 0.8 mg/mL) was injected to HPSEC system. 
* weight-average molecular weight. 
* z-average radius of gyration. 
* Density is equal to Mw/Rz

3. 
° P represents the probability of F-statistic exceeding expected for each comparison between cultivars 
in the respective column. 
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Table 7 

Average amylopectin molecular weight, polydispersity, gyration radius and density of squash fruit starches 
extracted from fruit after 5 weeks of storage. 

Cultiva/ Mw x 108 (g/mol)* Polydispersity (Mw) Rz (nm)* p (g/mol/nm3)* 
Cha Cha 4.07* 1.18 314bc 13.2=" 
Delica 4.00bc 1.24 316"= 12.6" 
Hyvita 5.31* 1.26 333' 14.3* 
Kurijiman 3.72"= 1.26 313"= 12.2"= 
Lakota 3.53= 1.20 321*" 10.7° 
Sweet Mama 4.38" 1.18 323* 12.9*" 
Warren Scarlet 4.57*" 1.17 32 r" 13.8*" 
Zapallo Macre 3.46= 1.42 303= 12.5" 

P = < 0.0001° f = 0.23 P = 0.0001 P = <0.0001 

Data were obtained from two injections of all three replicates. 
* Starch samples were dissolved in 90% DMSO solution and precipitated with 5 vol. ethanol; Freshly 
prepared starch aqueous solution (100 pL; 0.8 mg/mL) was injected to HPSEC system. 
* weight-average molecular weight. 
* z-average radius of gyration. 
* Density is equal to Mw/Rz

3. 
" Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
° P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 8 

Average amylopectin molecular weight, polydispersity, gyration radius and density of squash fruit starches 
extracted from fruit after 10 weeks of storage.** 

Cultiva/ MwX 10*(g/mol)+ Polydispersity (Mw) Rz (nm)* p (g/mol/nm3)* 
Cha Cha 3.74 1.32" 315 12.0 
Delica 4.01 1.29" 320 12.2 
Hyvita 4.51 1.40" 324 13.3 
Kurijiman 4.27 1.16" 319 13.2 
Sweet Mama 4.52 1.26" 321 13.7 
Zapallo Macre 4.67 1.73* 326 13.5 

P = 0.50° ^3
 

II O
 

O
 

O
 

P = 0.35 P = 0.52 

Data were obtained from two injections of all three replicates. 
* Starch samples were dissolved in 90% DMSO solution and precipitated with 5 vol. ethanol; Freshly prepared 
starch aqueous solution (100 JJ,L; 0.8 mg/mL) was injected to HPSEC system. 
* weight-average molecular weight. 
* z-average radius of gyration. 
* Density is equal to Mw/Rz

3. 
* Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
° P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 9 

Branch chain-length distributions of squash fruit amylopectins purified from starch extracted from fruit at harvest***. 

Cultivar Peak DP Average Percent distribution 
I II CL DP 6-9 DP 6-12 DP 13-24 DP 25-36 DP >37 

Cha Cha 12.9 49.4 28.8* 4.9 14.1 38.4 17.1 30.2 
Delica 12.9 48.9 28.0' 5.5 15.3 39.5 16.0 28.9 
Hyvita 12.8 48.4 26.9* 5.8 16.1 39.9 17.4 26.3 
Kurijiman 13.2 49.5 27.3* 5.4 15.4 40.5 16.6 27.1 
Lakota 12.8 49.3 27 J* 5.7 15.6 39.5 16.9 27.4 
Rouge Vif D'Etampes 13.1 49.4 27.1* 5.3 14.9 40.1 17.5 28.0 
Sweet Mama 13.2 49.0 28.3* 4.9 14.4 39.5 16.5 29.3 
Warren Scarlet 12.7 49.0 25.7" 6.1 16.7 41.0 16.7 25.6 
Whangaparoa Crown 12.7 48.2 28.3* 6.0 15.9 38.2 16.4 29.1 
Yogorou 12.9 49.3 28.1* 6.1 15.9 38.1 17.2 28.2 
Zapallo Macre 13.6 49.2 28.5* 5.2 14.7 39.4 16.7 28.7 

P = 0.08* P = 0.23 P = 0.002 P = 0.27 P = 0.13 

o
 

II ft
. 

h3
 II o
 

P = 0.08 

* Grouping of degree of polymerization (DP) numbers followed that of Hanashiro et al. (32). 
* Values comprise of four injections for all three replicates. 
* Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 10 

Branch chain-length distributions of squash fruit amylopectins purified from starch extracted from fruit after 
5 weeks of storage***. 

Cultivar Peak DP Average Percent distribution 
I II CL DP 6-9 DP 6-12 DP 13-24 DP 25-36 DP >37 

Cha Cha 13.3 48.8 28.3"* 5.9 15.5 38.9*" 16.4 28.7*" 
Delica 12.8 49.0 26.1" 6.6 17.2 41.2* 16.4 24.6* 
Hyvita 112 49.0 26.0" 5.8 16.1 42.2= 17.1 23.8" 
Kurijiman 13.3 49.3 28.6* 5.8 14.7 36.5" 17.9 30.2* 
Lakota 13.0 49.5 26.4* 6.8 16.9 41.1* 15.9 25.6* 
Sweet Mama 12.8 49.3 26.9* 6.2 16.0 40.0* 16.8 27.5* 
Warren Scarlet 13.0 49.5 26.5* 6.4 16.5 40.8* 16.5 25.6* 
Zapallo Macre 12.5 49.0 26.0" 5.7 15.9 41.3* 15.6 26.6* 

P = 0.20* P = 0.98 P = 0.004 P = 0.78 P = 0.39 P = 0.04 P = 0.76 P = 0.03 

* Grouping of degree of polymerization (DP) numbers followed that of Hanashiro et al. (32). 
* Values comprise of four injections for all three replicates. 
* Values with different letters denote differences at the 5% level of significance for each comparison between cultivars 
in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 11 

Branch chain-length distributions of squash fruit amylopectins purified from starch extracted from fruit after 
10 weeks of storage***. 

Cultivar Peak DP Average Percent distribution 

I II CL DP 6-9 DP 6-12 DP 13-24 DP 25-36 DP >37 
Cha Cha 13.7* 49.0 29.7* 5.3 13.6" 36.8 16.7*" 30.9* 
Delica 14.5' 49.3 28.3*" 5.8 15.0*" 37.3 16.0" 30.8* 
Hyvita 13.0" 49.0 25.2" 5.9 16.5* 41.6 17.8* 23.8" 
Kurijiman 13.0" 50.5 28. lab 5.6 15.1*" 39.1 16.1" 29.1'" 
Sweet Mama 13.3'" 48.3 28.6' 5.0 14.4*" 39.2 16.5*" 29.5*" 
Zapallo Macre 13.5*" 48.0 28.0*" 5.5 14.5*" 38.5 17.4*" 2g Q* 

P — 0.03* 

oo o
 

II CL
, 

f = 0.01 P = 0.29 P = 0.04 P = 0.15 *"0
 II o
 

o
 

P = 0.02 

* Grouping of degree of polymerization (DP) numbers followed that of Hanashiro et al. (32). 
* Values comprise of four injections for all three replicates. 
* Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 



www.manaraa.com

Table 12 

Squash fruit isoamylase-debranched amylopectins, from starch extracted from fruit at harvest and after 
5 or 10 weeks storage, measured using HPSEC*. 

Cultivar Harvest 5 weeks 10 weeks Cultivar 

Peak I (% r PeakII(%) Peak I (%) 
Peak II 

(%) 
Peak I 
(%) 

Peak II 
(%) 

Cha Cha 50.9 49.1 47.3 52.7 46.7 513 
Delica 516 46.4 50.2 49.8 48.0 52.0 
Hyvita 40.4 59.6 52.1 47.9 44.6 55.4 
Kurijiman 46.3 517 44.4 55.6 42.5 57.5 
Lakota 54.9 45.1 48.0 52.0 
Rouge Vif D'Etampes 52.7 47.3 
Sweet Mama 47.9 52.1 45.6 54.4 49.0 51.0 
Warren Scarlet 45.2 54.8 40.9 59.1 
Whangaparoa Crown 55.7 44.3 
Yogorou 55.2 44.8 
Zapallo Macre 49.4 50.6 51.1 48.9 55.3 44.7 

P = 0.54 P = 0.22 P = 0.42 

Peak I and II represent long (DP > 26) and short (DP < 26) amylopectin chains respectively. Values 
represent proportion of long and short amylopectin chains. 
* Values were obtained from two analyses for each of three replicates. 
* Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Figure la. Scanning electron micrographs of Cha Cha (A), Delica (B), Hyvita (C), 
Kurijiman (D), Lakota (E) and Rouge Vif D'Etampes (F) squash fruit starches, extracted at 
harvest (scale bar =10 |im). 
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Figure lb. Scanning electron micrographs of Sweet Mama (G), Warren Scarlet (H), 
Whangaparoa Crown (I), Yogorou (J) and Zapallo Macre (K) squash fruit starches, extracted 
at harvest (scale bar =10 j-im). 
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Figure 2. Scanning electron micrographs of squash starch extracted from fruit of Delica after 
5 (A) and 10 weeks (B) of storage, and Warren Scarlet (C) after 5 weeks of storage (scale bar 
= 10 jam). 
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Figure 3. X-ray diffraction patterns of Cha Cha, Delica, Hyvita, Kurijiman, Lakota, Rouge 
Vif D'Etampes, Sweet Mama, Warren Scarlet, Whangaparoa Crown, Yogorou and Zapallo 
Macre squash fruit starches. 
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Figure 4a. Relative peak area distributions of Cha Cha, Delica, Hyvita and Kurijiman squash amylopectin branch chain-lengths, 
from finit at harvest, analyzed by using a HPAEC-ENZ-PAD. Error bars represent standard error of the mean for each individual 
DP from four analyses of three replicates. DP =Degree of polymerization. 
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Figure 4b. Relative peak area distributions of Lakota, Rouge Vif D'Etampes, Sweet Mama and Warren Scarlet squash 
amylopectin branch chain-lengths, from fruit at harvest, analyzed by using a HPAEC-ENZ-PAD. Error bars represent standard 
error of the mean for each individual DP from four analyses of three replicates. DP =Degree of polymerization. 
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Figure 4c. Relative peak area distributions of Whangaparoa Crown, Yogorou and Zapallo Macre squash amylopectin branch 
chain-lengths, from fruit at harvest, analyzed by using a HPAEC-ENZ-PAD. Error bars represent standard error of the mean for 
each individual DP from four analyses of three replicates. DP =Degree of polymerization. 
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Figure 5a. Relative peak area distributions of Cha Cha, Delica, Hyvita and Kurijiman squash fruit amylopectin branch chain-
lengths, from fruit stored 5 weeks, analyzed by using a HPAEC-ENZ-PAD. Error bars represent standard error of the mean for 
each individual DP from four analyses of three replicates. DP =Degree of polymerization. 
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Lakota Sweet Mama 

Warren Scarlet Zapallo Macre 

Figure 5b. Relative peak area distributions of Lakota, Sweet Mama, Warren Scarlet and Zapallo Macre squash fruit amylopectin 
branch chain-lengths, from fruit stored 5 weeks, analyzed by using a HPAEC-ENZ-PAD. Error bars represent standard error of 
the mean for each individual DP from four analyses of three replicates. DP ^Degree of polymerization. 
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Figure 6a. Relative peak area distributions of Cha Cha, Delica, Hyvita and Kurijiman squash fruit amylopectin branch chain-
lengths, from fruit stored 10 weeks, analyzed by using a HPAEC-ENZ-PAD. Error bars represent standard error of the mean for 
each individual DP from four analyses of three replicates. DP =Degree of polymerization. 
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Sweet Mama Zapallo Macre 

Figure 6b. Relative peak area distributions of Sweet Mama and Zapallo Macre squash fruit amylopectin branch chain-lengths, 
from fruit stored 10 weeks, analyzed by using a HPAEC-ENZ-PAD. Error bars represent standard error of the mean for each 
individual DP from four analyses of three replicates. DP =Degree of polymerization. 
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CHAPTER 3. ROLE OF STARCH STRUCTURE IN TEXTURE OF SQUASH AND 
STARCH FUNCTIONAL PROPERTIES. II. FUNCTIONAL PROPERTIES OF 

STARCH EXTRACTED FROM WINTER SQUASH FRUIT (Cucurbita maxima D.) 
AT HARVEST AND AFTER STORAGE. 

A paper to be submitted to Journal of Agricultural and Food Chemistry 

David G. Stevenson and Jay-lin Jane* 

Department of Food Science & Human Nutrition, Iowa State University, Ames, IA, 50011, 
USA. 

* Corresponding author (phone 1 515 294 9892; fax 1 515 294 8181; e-mail 
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ABSTRACT 

Starch was isolated from fruit of twelve winter squash cultivars at harvest, 5 or 10 weeks 

storage and starch functional properties were investigated. Gelatinization temperature of 

onset (T0) and conclusion (Tc), range of gelatinization temperature (ROG) and enthalpy 

change of gelatinization (AH), measured by using differential scanning calorimetry, were 

significantly different among the squash cultivars at all storage times. Starch, at harvest, had 

T0 from 61.2°C-65.0°C, Tc from 67.8°C-72.1°C, ROG from 5.7°C-9.0°C, and AH from 14.2-

17.8 J/g. After 5 and 10 weeks storage, starch typically had lower T0, Tc, AH and higher 

ROG. Starch, at harvest, retrograded 7 d at 4°C had T0 about 36.5°C, Tc from 65.1°C-68.5°C 

and AH was high from 7.5 to 9.8 J/g. Starch pastes from fruit at harvest, measured by using 

Rapid Visco-Analyser, had high peak viscosity (from 179-224 rapid viscoanalyser units 

(RVU)), final viscosity (163-268 RVU), setback (60-108 RVU) and pasting temperature 

from 66°C-74°C. Starches, at harvest, exhibited strong gels with firmness 1 d at 4°C from 

16.1-26.7 g. 
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INTRODUCTION 

Starch is the major storage carbohydrate in plants. Starch has been extensively studied from 

many botanical sources, but starches in squash and pumpkins have received little attention. 

Evaluation of commercial potential of novel starches requires investigation of the starch 

functional properties. Functional properties of many cereal starches have been well 

characterized, but little research has focused on the functional properties of fruit starches 

from the plant family Cucurbitaceae, which includes winter squash. 

Sugimoto et al. (1) studied starch functional properties of two winter squash cultivars, 

Cucurbita maxima cv. Ebisu (close genetic relative to Delica) and C. moschata cv. Kogiku. 

For starch obtained from squash fruit at harvest, Ebisu had onset gelatinization temperature 

(T0) of 62.1°C, peak gelatinization temperature (Tp) of 65.9°C and conclusion gelatinization 

temperature (Tc) of 74.1°C. T0, Tp and Tc for Kogiku were 62.6°C, 67.3°C and 75.3°C, 

respectively. Enthalpy change of gelatinization was 13.8 and 12.6 joules per gram for Ebisu 

and Kogiku, respectively. Brabender amylography was used to show peak viscosity of Ebisu 

and Kogiku was 810 and 735 Brabender units (BU), final viscosity was 590 and 495 BU and 

breakdown was 460 and 445 BU, respectively. Functional properties of starches from these 

squash after storage were not studied. 

In a study involving seven Cucurbita maxima squash cultivars, we have shown that 

squash starch, extracted from fruit at harvest, had T0 ranging from 60.6°C to 63.5°C, Tc 

ranging from 67.7°C to 70.4°C, and AH ranging from 15.9 to 17.4 J/g (Chapter 1). 
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Rétrogradation rate of squash starches, after 7 d at 4°C, ranged from 41% to 55%. Squash 

starches, relative to native starches from other botanical sources, had high peak viscosity 

(ranging from 174 to 233 rapid visco-analyser units (RVU)), final viscosity (193 to 244 

RVU), setback (79 to 100 RVU), and pasting temperature ranged from 65.6°C to 68.8°C. 

In our present study, we investigate the functional properties of winter squash fruit 

starches, belonging to species Cucurbita maxima, extracted from fruit at harvest and after 5 

or 10 weeks of storage. In a future publication, we will correlate (Chapter 5) the starch 

functional properties with results of the starch structural properties (Chapter 2), and the 

textural attributes of raw and cooked squash fruit (Chapter 4). 

MATERIALS AND METHODS 

Plant Material and Starch Isolation. Starches used in this study were the same starch 

samples described previously (Chapter 2). Therefore, all procedures of squash cultivation, 

harvesting, storage and starch isolation were identical. 

Thermal Properties by Differential Scanning Calorimetry (DSC). Thermal properties of 

starch were determined using a differential scanning calorimeter (DSC-7, Perkin-Elmer, 

Norwalk, CT) (2). Approximately 2 mg of starch was weighed in an aluminum pan, mixed 

with 6 mg of deionized water and sealed. Sample was allowed to equilibrate for 2 h and 

scanned at a rate of 10°C/min over a temperature range of 10-100°C. An empty pan was 

used as the reference. Rate of starch rétrogradation was determined using the same 

gelatinized samples, stored at 4°C for 7 d, and analyzed using DSC as described previously 
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(3). All thermal properties were carried out in triplicate for each replicate of each cultivar at 

each storage time. 

Pasting Properties by Rapid Visco-Analyser (RVA) and Gel Properties. Starch pasting 

properties were analyzed using a Rapid Visco-Analyser (RVA-4, Newport Scientific, 

Sydney, Australia) (2). Starch suspension (8%, w/w), in duplicate for each replicate of each 

cultivar at each storage time, was prepared by weighing starch (2.24 g, dry starch basis (dsb)) 

into a RVA canister and making up the total weight to 28 g with distilled water. Starch 

suspension was equilibrated at 30°C for 1 min, heated at a rate of 6.0°C/min to 95°C, 

maintained at that temperature for 5.5 min, and then cooled to 50°C at a rate of 6.0°C/min. 

Constant paddle rotating speed (160 rpm) was used throughout entire analysis. Immediately 

after the completion of the RVA sample run, the spindle was removed, and the canister was 

wrapped in several layers of Saran® wrap, to minimize dehydration, and placed in a 

refrigerator at 4°C. After 1 or 7 d, canisters were removed from the refrigerator, equilibrated 

to room temperature, and gel firmness and stickiness were measured using a Stable Micro 

Systems TAXT2z Texture Analyzer (Texture Technologies Corp., Scarsdale, NY) equipped 

with Texture Expert for Windows software (v 1.22). Each gel was measured five times by 

using a 4 mm diameter cylindrical stainless steel punch probe (TA54). Pretest speed was 2.0 

mm/s, and gels were compressed at a test speed of 0.9 mm/s and a penetration test distance of 

7.5 mm. Peak force of the curve was reported as the firmness of gels and stickiness of gels 

was defined as the negative load portion of the curve as described previously (4). 

Statistical analysis. All statistical significance tests were calculated using SAS (5) and 

applying Tukey difference test (6) at the 5% level of significance. 
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RESULTS AND DISCUSSION 

Thermal properties of Native Starch. Onset gelatinization temperatures (T0) of squash 

starches, extracted from fruit at harvest, ranged from 61.2°C to 65.0°C, and there were 

significant differences between cultivars (P < 0.0001) (Table 1). The four buttercup 

cultivars (Cha Cha, Delica, Kurijiman and Sweet Mama) had T0 significantly higher than the 

closely related, high-starch content, buttercup-cross, Hyvita, and also the medium-starch 

content squash cultivars, Warren Scarlet, Whangaparoa Crown and Zapallo Macre. T0 of 

Kurijiman was also significantly higher than Lakota. Buttercup cultivars having a higher T0 

than other squash cultivars was reported previously (2). 

Peak gelatinization temperatures (Tp) of squash starches, from fruit at harvest, ranged 

from 64.2°C to 67.9°C, with significant differences found between cultivars (Table 1). 

Hyvita Tp was significantly lower than the four buttercup cultivars. Rouge Vif D'Etampes Tp 

was significantly higher than that of Hyvita, Warren Scarlet, Whangaparoa Crown and 

Zapallo Macre. Conclusion gelatinization temperature (Tc) of starch was also significantly 

different for the squash cultivars (P < 0.0001), with Lakota and Rouge Vif D'Etampes having 

higher Tc than Hyvita, Whangaparoa Crown and Zapallo Macre (Table 1). 

The range of gelatinization temperature (ROG) (Tc-T0) of squash starch isolated from 

fruit at harvest is very low compared with other starches, and significant differences were 

observed between cultivars (P < 0.0001) (Table 1). Previous findings (2) reported three 

buttercup cultivars to have ROG of 6.3°C, and in our present study the four buttercup 

cultivars had ROGs of 6.4°C or less, with ROG of 5.7°C for Kurijiman. Despite T0 for 

Hyvita distinctly lower than the high-starch content buttercup squash, ROG of 6.5°C for 
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Hyvita was similar to buttercup cultivars. Two medium-starch content cultivars, 

Whangaparoa Crown and Yogorou, had ROGs (6.7°C and 6.2°C, respectively) comparable to 

buttercup cultivars. Medium-starch content cultivars having similar ROGs to buttercup 

cultivars were not found in previous study (2). To our knowledge, only water yam starch 

(Dioscorea alata) with a ROG of 5.4°C is lower than some of the ROG of squash cultivar 

starches found in this study (7). Sugimoto et al. (1) studied thermal properties of starches 

from two winter squash, including the buttercup Cucurbita maxima cv. Ebisu that is a close 

genetic relative to Delica. T0 for Ebisu was reported to be 62.1°C, which is lower than the 

63.8°C for Delica, and Tc for Ebisu was 74.1°C, compared with 70.1°C for Delica. ROG of 

12°C for Ebisu is much wider than the ROG for Delica (6.3°C) reported in this study. The 

ROG of (12°C) reported for Ebisu is substantially wider than all the cultivars that we have 

investigated (5.7-9.0°C). 

Enthalpy change of gelatinization (AH) for squash starches, extracted from fruit at 

harvest, was significantly different between cultivars (P = 0.0003) (Table 1). Cha Cha, 

Lakota and Sweet Mama AH were significantly higher than Warren Scarlet and Zapallo 

Macre. There was no clear trend for AH of the medium- and high-starch content squash 

cultivars, but there is some suggestion that buttercup cultivars are higher. The high AH 

reported for squash starches in this study is comparable with previous findings (2), and is 

higher than all other native starches, except green banana starch (4). However, Sugimoto et 

al. (1) reported AH for squash starches that were about 20% lower than what we observed. 

To of squash starches extracted from fruit after 5 weeks storage was lower for 

all cultivars except Zapallo Macre, and significant differences were observed between 
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cultivars (P = 0.004) (Table 2). Most squash starches T0 decreased by about 3°C, probably 

due to increased crystal defects, possibly due to enzymic attack. Significant differences 

between squash cultivars were also observed for Tp and Tc for starch from fruit after 5 weeks 

storage. Zapallo Macre Tp was significantly higher than Delica, Hyvita and Warren Scarlet, 

and Tc was significantly higher than all cultivars except Lakota and Sweet Mama. AH of 

starch from fruit stored 5 weeks decreased for all squash cultivars and was significantly 

different (P = 0.0005). Squash cultivar ROG of starch from fruit after 5 weeks storage was 

significantly different (P = 0.0009). After 5 weeks storage, the high-starch content squash 

cultivars showed differences in ROG. Cha Cha, Delica and Kurijiman all had ROGs < 6.6°C 

after 5 weeks of storage, similar to ROG at harvest. Hyvita and Sweet Mama ROGs were 

8.8°C and 7.4°C, respectively, considerably higher than at harvest. 

Squash starch, extracted from fruit after 10 weeks storage, showed no change in T0, 

Tp and Tc compared with starch extracted from fruit after 5 weeks storage (Table 3). T0, Tp 

and Tc were all significantly different for the starch of squash cultivars after 10 weeks 

storage, primarily because Zapallo Macre went against the overall trend and had increases in 

T0, Tp and Tc during storage. Zapallo Macre starch, from fruit stored 10 weeks had 

significantly lower AH than all other squash cultivars. ROGs for all squash cultivars after 10 

weeks storage were similar to that at the harvest, except for Sweet Mama which was 

significantly higher than most cultivars. 

Thermal Properties of Retrograded Starch. Thermal properties of starch isolated from 

squash fruit at harvest and retrograded for 7 d at 4°C, are shown in Table 4. Thermal 

transition onset temperature (ToR) of the retrograded starch was not significantly different 
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among the squash cultivars as the range in T0R was 35.6°C to 37.5°C. Significant differences 

were observed for peak temperature (TPR) and conclusion (TCR) of retrograded squash 

starches (P = 0.001 for both). Rouge Vif D'Etampes TPR was significantly higher than 

Delica, Hyvita, Lakota and Whangaparoa Crown at harvest. Enthalpy change of the thermal 

transition (AHR) for all retrograded squash starches was higher than that of starches from 

other botanical sources (4). Percentage rétrogradation of squash starch from fruit at harvest 

was similar for all cultivars, except Kurijiman that had significantly lower percentage 

rétrogradation than did Rouge Vif D'Etampes. For starch isolated from squash fruit at 

harvest, T0R, TPR, TCR, AHR and percent rétrogradation that we report are very similar to 

previous findings (2). 

After 5 weeks storage of fruit, the general ranges of values for T0R, TPR and TCR of 

retrograded starches remain unchanged compared with that of starches isolated at harvest, but 

T0R is now significantly different (P = 0.005) among the squash cultivars and TPR is no longer 

significant but there is still strong suggestion of cultivar differences (P = 0.06) (Table 5). 

TOR of Sweet Mama starch at 5 weeks storage was significantly lower than TOR for Delica, 

Warren Scarlet and Zapallo Macre. AHR of retrograded starch after 5 weeks storage 

decreased for all squash cultivars, except Kurijiman that remained unchanged. Hyvita had 

significantly higher AHR than Lakota and Warren Scarlet after 5 weeks storage. Delica, 

Kurijiman and Sweet Mama had significantly higher AHR than Warren Scarlet after 5 weeks 

storage. Because of the variation in starch rétrogradation processes, the range of thermal 

transition of retrograded starch (ROGR) is rarely studied. Although no significant differences 

in ROGR between squash cultivars were observed for retrograded starch from fruit at harvest, 
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ROGR of retrograded starch from fruit after 5 weeks storage was significantly different (P = 

0.01), with ROGR of Hyvita and Sweet Mama higher than Warren Scarlet. 

ToR of retrograded squash starch, extracted from fruit after 10 weeks storage, was 

either the same or higher than from fruit at 5 weeks of storage (Table 6). AHR of retrograded 

starch isolated from 10-week stored fruit for all squash cultivars, except Hyvita, was lower 

than retrograded starch from fruit at harvest. This is likely related to the structure of starch 

attacked by amylases. Percentage rétrogradation also declined for all squash cultivars except 

Hyvita that had significantly higher rétrogradation percentage than Delica and Zapallo 

Macre. 

Pasting Properties. Pasting properties of squash fruit starches, extracted at harvest, are 

shown in Table 7. Pasting profiles of selected squash cultivar starches, extracted from fruit 

at harvest, are shown in Figure 1. Peak viscosity for squash starches, from fruit at harvest, 

was high relative to native starch from other botanical sources (4), and ranged from 178 to 

224 Rapid Visco-Analyzer units (RYU). Peak viscosity was not significantly different for 

the squash cultivars, in contrast to findings reported previously (2). Despite lack of 

significant difference for squash starch peak viscosity and breakdown, Cha Cha had a 

significantly higher trough than Delica. Final viscosity of squash starches, from fruit at 

harvest, was not significantly different, but ranged from 163 to 268 RVU. Squash starches, 

from fruit at harvest, have very high setback compared with starches from other botanical 

sources (4), with three cultivars, Cha Cha, Sweet Mama and Whangaparoa Crown all 

exceeding 100 RVU, which is rarely observed for native starches. Setback was not 

significantly different for squash starches at harvest. High setback with no significant 

differences has been reported previously for squash starches (2). Pasting temperature of 
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squash cultivar starches, from fruit at harvest, was significantly different (P = 0.002). 

Warren Scarlet pasting temperature was considerably higher than all other squash cultivars 

except Lakota and Rouge Vif D'Etampes. Pasting temperature of squash starch, from fruit at 

harvest, is similar to previous studies of squash starch (2). 

Five weeks storage of squash fruit resulted in starches from the squash cultivars that 

differed significantly in every pasting parameter except pasting temperature (Table 8). 

Pasting profiles of Cha Cha and Delica starches, obtained from fruit stored 5 or 10 weeks, is 

shown in Figure 2. There was no consistent trend in changes in peak viscosity after 5 weeks 

storage, but Kurijiman had significantly higher peak viscosity than Hyvita, and all squash 

cultivars were significantly higher than Lakota. Lakota had relatively low peak viscosity at 

harvest as well, which is in contrast with that reported by Stevenson et al. (2) in which 

Lakota had the highest peak viscosity. The trough for Cha Cha was significantly higher than 

all other cultivars, and Lakota had significantly lower trough than all cultivars except Hyvita. 

Breakdown of starch paste, for Kurijiman starch extracted from fruit after 5 weeks storage, 

was significantly greater than Cha Cha and Lakota. Breakdown for Delica and Sweet Mama 

was also significantly higher than Lakota. Final viscosity of starch, from fruit stored for 5 

weeks, showed dramatic differences for Lakota that had a final paste viscosity of 132 RVU 

which was significantly lower than all other squash cultivars, having final viscosity 

exceeding 200 RVU. Cha Cha in particular had very high final viscosity (295 RVU). 

Setback was high for all squash starches, from fruit stored 5 weeks, except for Lakota which 

had setback that was significantly lower than Cha Cha and Hyvita. Pasting temperature 

decreased for all cultivars after 5 weeks storage, except Hyvita which remained constant and 

Cha Cha that increased. 
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All pasting property parameters of squash starches, extracted from fruit after 10 

weeks storage, were significantly different between cultivars (Table 9). Zapallo Macre had 

significantly lower peak viscosity, trough, breakdown, final viscosity and setback than all 

other squash cultivars. Cha Cha had significantly higher trough and lower breakdown than 

Sweet Mama. The four buttercup cultivars were similar in peak viscosity, final viscosity, 

setback and pasting temperature for starch obtained from fruit stored for 10 weeks. Pasting 

profiles of selected starches, obtained from fruit after 10 weeks storage, are shown in Figure 

2. 

Gel Properties. Squash starches, isolated from fruit at harvest, developed strong gels, but no 

significant differences between cultivars were observed either for firmness or stickiness of 

gels formed at 4°C for either 1 or 7 d (Table 10 and 11). However, after squash fruit have 

been stored for 5 or 10 weeks, significant differences in gel firmness were observed. Cha 

Cha starch gels were significantly firmer than Lakota after both 1 and 7 d at 4°C for fruit 

stored 5 weeks, and significantly firmer than all other squash cultivars for fruit stored for 10 

weeks (P < 0.02). Hyvita gels, formed from starch obtained from fruit after 5 weeks storage, 

had significantly higher stickiness than Delica after 1 d at 4°C (P = 0.02). No other 

significant differences were observed for stickiness for squash starches obtained from fruit at 

either 5 or 10 weeks storage. Firmness of starch gels for all buttercups, except Sweet Mama, 

increased with fruit storage time. For starches obtained from fruit at harvest, firmness of 

Sweet Mama gels and stickiness of Rouge Vif D'Etampes gels were considerably higher than 

any other cultivar. 
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Table 1 

Thermal properties of native squash starches isolated from fruit at harvest. 

Cultiva/ T. (°C)*+ T,(°C) Tc(°Q Range (°C)* AH(J/g) 
Cha Cha 64.4* 67.2*° 70.4* 6.0d 17.8* 
Delica 63.8* 66.7abcd 70. labc 6.3°^ 16.5*° 
Hyvita 61.3° 64.2= 67.8° 6.5*^ 15.8*° 
Kurijiman 65.0* 67.7» 70.7* 5.7d 17.2* 
Lakota 62.9*= 67.6* 71.8» 8.9* 17.7* 
Rouge Vif D'Etampes 64.4* 67.9* 72.1* 7.7*° 16.4** 
Sweet Mama 64.4* 67.5*° 70.8* 6.4bcd 17.7* 
Warren Scarlet 61.2° 65.8*"° 70.2*° 9.0* 14.8* 
Whangaparoa Crown 61.8° 64.9*= 68.4* 6.7*d 16.3** 
Yogorou 64.2* 67.3*° 70.4* 6.2^ 16.8* 
Zapallo Macre 61.2° 65.6«" 69.3* 8.1* 14.2° 

P< 0.0001* P< 0.0001 P < 0.0001 P < 0.0001 P = 0.0003 

Starch samples (-2.0 mg, dsb) and deionized water (-6.0 mg) were used for the analysis; T0, Tp, Tc 

and AH are onset, peak, conclusion temperature, and enthalpy change, respectively. 
* Values were calculated from three analyses for each of three replicates. 
* Range of gelatinization is equal to Tc-T0. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars 
in the respective column. 
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Table 2 

Thermal properties of native squash starches isolated from fruit after 5 weeks of storage. 

Cultivar T. (°C)*+ T,(°C) Tc (°C) Range (°C)* AH(J/g) 
Cha Cha 60.8** 64.1abc 67.4bcd 6.6^ 14.9* 
Delica 60.6""= 63.4bc 66.7°" 6.1d 15.8* 
Hyvita 58.7bc 63.2** 67.5^ 8.8* 14.4* 
Kurijiman 60.9abc 64.0abc 67.5^ 6.6^ 15.0* 
Lakota 61.7ab 65.7ab 69.6* y çabcd 12.6ab 

Sweet Mama 61.6*b 65.0ab 69.0*h° j ^abcd 14.6* 
Warren Scarlet 57.5° 61.5° 65.9d 8.4* 9.8b 

Zapallo Macre 62.6* 66.9* 70.6* 8.0*** 13.4a 

P = 0.004* P = 0.0006 P = 0.0003 P = 0.0009 P = 0.0005 

Starch samples (-2.0 mg, dsb) and deionized water (-6.0 mg) were used for the analysis; T0, Tp, Tc 

and AH are onset, peak, conclusion temperature, and enthalpy change, respectively. 
* Values were calculated from three analyses for each of three replicates. 
* Range of gelatinization is equal to Tc-T0. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars 
in the respective column. 
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Table 3 

Thermal properties of starch isolated from squash fruit after 10 weeks of storage. 

Cultivar* To (°Cf* T,(°C) Tc(°C) Range (°C)* AH(J/g) 

Cha Cha 60.9b 64.9b 68.2"* 7.2* 15.3* 
Delica 60.9b 64.2b 67.8b 6.9b 15.6* 
Hyvita 60.8b 63.8b 67.4b 6.7b 15.3* 
Kurijiman 61.4b 64.5b 67.7b 6.4" 15.9* 
Sweet Mama 60.0b 64.8b 68.6ab 8.6* 13.8* 
Zapallo Macre 63.3" 66.5* 69.4* 6.1b 10.0b 

P = 0.0003* f = 0.004 P = 0.04 P = 0.002 P< 0.0001 

Starch samples (-2.0 mg, dsb) and deionized water (-6.0 mg) were used for the analysis; T0, Tp, Tc 

and AH are onset, peak, conclusion temperature, and enthalpy change, respectively. 
* Values were calculated from three analyses for each of three replicates. 
* Range of gelatinization is equal to Tc-T0. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars 
in the respective column. 
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Table 4 

Thermal properties of starch isolated from squash fruit at harvest*6 and retrograded. 

Cultivar* To(°C) T,(°C) T„CC) Range (°C) AH(J/g) % rétrogradation 
Cha Cha 37.0 56.3* 65.9" 28.9 8.8* 49.3* 
Delica 35.7 53.9" 65.4" 29.6 9.3* 56.2* 
Hyvita 36.4 54.1" 65.3" 28.9 OO

 CT 51.1* 
Kurijiman 37.5 54.5* 65.4" 27.9 7.5 43.5" 
Lakota 36.8 515" 65.1" 28.3 8.3* 47.2* 
Rouge Vif D'Etampes 37.4 57 J* 68.5* 31.1 9.8* 59.8* 
Sweet Mama 36.2 54.4* 65.9" 29.7 9.0* 51.2* 
Warren Scarlet 36.4 56.6* 66.1" 29.7 8.1* 55.6* 
Whangaparoa Crown 35.6 54.1" 65.1" 29.4 8.3* 51.1* 
Yogorou 36.7 56.0* 65.9" 29.2 7.8* 46.3* 
Zapallo Macre 36.0 56.0* 65.4" 29.4 7.8* 53.8*" 

P = 0.57* II O
 

O
 

o
 

*"0
 II o
 

©
 

o
 

P = 0.20 P = 0.02 P- 0.05 

* Same starch samples after gelatinization (see Table 1) were left for 7 days at 4°C and rescan using DSC. 
# Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 5 

Thermal properties of starch isolated from squash fruit stored for 5 weeks and retrograded*. 

Cultivar* T,(°C) T,(°C) T.(°C) Range (°C) AH(J/g) % rétrogradation 
Cha Cha 36.3* 55.9 65.1 28.8** 6.3"* 42.3 
Delica 37.6» 56.3 65.0 27.4ab 7.6* 48.2 
Hyvita 35.0ab 513 65.7 30.6* 7.9* 53.9 
Kurijiman 35.7*" 54.7 64.7 29.0ab 7.5* 49.6 
Lakota 36.4ab 55.6 65.2 28.7ab 5.6* 43.9 
Sweet Mama 34.0b 54.1 65.3 31.3* 7.3* 50.3 
Warren Scarlet 37.8* 56.8 64.0 26.3b 5.0° 52.0 
Zapallo Macre 37.7* 54.4 65.2 27.5ab 6.9»* 51.8 

P = 0.005* P = 0.06 P = 0.46 

o
 

o
 

ll P = 0.002 P - 0.07 

* Same starch samples after gelatinization (see Table 2) were left for 7 days at 4°C and rescan using DSC. 
* Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 6 

Thermal properties of starch, isolated from squash fruit stored for 10 weeks and retrograded*. 

Cultivar T„(°C) Tp m T. (°C) Range (°C) AH(J/g) % rétrogradation 
Cha Cha 37.3 56.7 66.3 28.9 7.0ab 45.9* 
Delica 37.6 54.7 64.1 26.4 5.7abc 35.8" 
Hyvita 37.2 55.7 66.7 29.5 8.0* 52.2* 
Kurijiman 36.2 54.0 64.8 28.6 6.2* 38.8* 
Sweet Mama 38.5 56.1 65.8 27.3 5.6* 40.4* 
Zapallo Macre 37.6 54.6 64.3 26.6 3.6° 35.6" 

P = 0.30* "y
 

II p
 

P = 0.14 P = 0.15 f = 0.001 f = 0.02 

* Same starch samples after gelatinization (see Table 3) were left for 7 days at 4°C and rescan using DSC. 
* Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 7 

Pasting properties of squash fruit starches, extracted at harvest, measured by Rapid Visco-Analyzer. 

Cultivar Peak 
Viscosity** 

Trough* Breakdown*1 Final 
Viscosity* 

Setback* 
Peak Time 

(min) 
Pasting 

Temperature (°C) 
Cha Cha 224.4 160.5* 63.7 268.3 107.8 11.2 67.7" 
Delica 178.7 103.5" 75.3 163.1 59.6 10.2 66.1" 
Hyvita 192.3 126.3* 66.1 218.3 92.0 10.9 66.0" 
Kurijiman 187.0 115.8* 71.2 190.9 75.0 10.0 66.9" 
Lakota 184.0 113.9* 70.1 190.5 76.6 10.4 68.6* 
Rouge Vif D'Etampes 181.1 131.0* 50.1 215.6 84.6 11.4 69.2* 
Sweet Mama 207.1 152.8* 54.3 256.8 104.0 11.5 68.0" 
Warren Scarlet 184.2 148.6* 35.5 236.1 87.5 11.9 73.8» 
Whangaparoa Crown 221.0 139.3* 81.7 246.7 107.5 10.8 65.9" 
Yogorou 187.0 124.5* 62.6 2211 98.6 11.1 66.9" 
Zapallo Macre 211.8 141.8* 70.0 238.0 96.3 11.1 67.0" 

P = 0.42* f =0.04 P = 0.28 P = 0.13 P = 0.38 P = 0.06 P = 0.002 

8% (w/w) starch suspension measured in duplicate for all three replicates. 
* Viscosity measured in Rapid Visco-Analyzer units (RVU), 1 RVU =12 centipoise. 
* Values with different letters denote differences at the 5% level of significance for each comparison between cultivars 
in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 8 

Pasting properties of squash fruit starches, extracted after 5 weeks of storage, measured by Rapid Visco-Analyzer. 

Cultiva/* Peak 
Viscosity*1* 

Trough* Breakdown" 
Final 

Viscosity" 
Setback" 

Peak Time 
(mm) 

Pasting 
Temperature (°C) 

Cha Cha 214.6ab 187.2* 27.4e 294.9* 107.7* 12.2* 72.6 
Delica 221.0* 143.2" 77.8*" 224.0* 80.8*" 11.0*" 65.6 
Hyvita 177.2* 119.4* 57.8** 217.5* 98.1* 10.9" 66.3 
Kurijiman 243.0* 148.8" 94.2* 236.1* 87.3*" 10.9" 64.5 
Lakota 136.5e 97.0C 39.5* 132.0" 35.0" 10.6" 66.8 
Sweet Mama 204.0* 131.1" 72.9*" 218.4* 87.3*" ii.r" 66.1 •

 

o
 

o
 

o
 

II P = < 0.0001 P = 0.002 P = 0.0006 

o
 

o
 

II ft
, 

f = 0.02 P = 0.09 

* 8% (w/w) starch suspension measured in duplicate for all three replicates. 
* Viscosity measured in Rapid Visco-Analyzer units (RVU), 1 RVU = 12 centipoise. 
* Values with different letters denote differences at the 5% level of significance. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
* Zapallo Macre is missing because insufficient starch yield for fruit randomly selected at 5 weeks storage for 
each comparison between cultivars in the respective column. 
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Table 9 

Pasting properties of squash fruit starches, extracted after 10 weeks of storage, measured by Rapid Visco-Analyzer. 

Cultiva/ Peak 
Viscosity"* 

Trough* Breakdown* Final Viscosity* Setback* 
Peak Time 

(min) 
Pasting 

Temperature (°C) 
Cha Cha 187.9* 169.1* 19.0* 274.9* 105.8* 12.4* 69.8" 
Delica 197.1* 151.2* 45.9* 235.2* 84.0* 11.8* 68.6" 
Kurijiman 190.4* 150.1* 40.3* 240.8* 90.8* 11.9* 70.2b 

Sweet Mama 185.5* 127.7b 57.8* 222.1* 94.5* 11.2b 67.2" 
Zapallo Macre 71.0b 65.0= 6.0= 104.9b 39.9b 11.3b 82.4* 

P = <0.001* P = < 0.0001 P = 0.0002 P = < 0.0001 f = 0.005 

r—
1 o

 
©

 II P = < 0.0001 

* 8% (w/w) starch suspension measured in duplicate for all three replicates. 
* Viscosity measured in Rapid Visco-Analyzer units (RVU), 1 RVU = 12 centipoise. 
* Values with different letters denote differences at the 5% level of significance for each comparison between cultivars in the 
respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the respective column. 
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Gel firmness (g) from starches extracted from fruit at harvest and after 5 or 10 weeks storage, 
heated under RVA temperature profile and stored at 4°C for 1 or 7 d#*. 

Cultivar Harvest 5 weeks 10 weeks Cultivar 
1 day 7 days 1 day 7 days 1 day 7 days 

Cha Cha 20.0 27.5 22.6* 35.3* 25.4* 41.8* 
Delica 16.1 20.1 13.5* 21.3* 14.4b 23.4b 

Hyvita 18.4 25.7 15.9* 24.3* 
Kurijiman 18.3 23.2 15.5* 24.9* 17.3b 24.4b 

Lakota 21.7 27.5 8.4b 12.3b 

Rouge Vif D'Etampes 19.4 27.7 
15.7* 218* Sweet Mama 26.7 37.2 15.7* 218* 12.lb 15.0b 

Warren Scarlet 16.4 28.8 
Whangaparoa Crown 17.7 23.1 
Yogorou 22.1 29.8 
Zapallo Macre 17.3 20.2 

P = 0.53* f = 0.51 f = 0.02 P = 0.02 P = 0.0009 II o
 

©
 

o
 

Values were obtained from five measurements for each of three replicates. 
* Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Gel stickiness (g/s) from starches extracted from fruit at harvest and after 5 or 10 weeks storage, 
heated under RVA temperature profile and stored at 4°C for 1 or 7 d#*. 

Cultivar Harvest 5 weeks 10 weeks Cultivar 
1 day 7 days 1 day 7 days 1 day 7 days 

Cha Cha 9.8 15.4 5.9ab 10.4 10.1 9.3 
Delica 11.5 15.7 2.8" 13.2 6.2 13.1 
Hyvita 9.2 11.3 9.6* 14.3 
Kurijiman 12.4 18.4 3.5* 10.7 6.5 12.4 
Lakota 13.3 18.6 8.7* 14.6 
Rouge Vif D'Etampes 21.0 23.4 
Sweet Mama 8.8 18.2 8.9* 14.2 7.6 8.1 
Warren Scarlet 12.3 19.1 
Whangaparoa Crown 7.4 14.1 
Yogorou 16.5 14.8 
Zapallo Macre 11.7 17.0 

P = 0.20* P = 0.41 P = 0.02 P = 0.46 P = 0.09 P = 0.28 

Values were obtained from five measurements for each of three replicates. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars 
in the respective column. 
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Figure 1. Rapid Visco-Analyser pasting profiles of Cha Cha, Delica, Sweet Mama, Warren Scarlet and 
Whangaparoa Crown squash fruit starches extracted at harvest (8.0% dsb, w/w). 
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Figure 2. Rapid Visco-Analyser pasting profiles of Cha Cha and Delica squash starches extracted from fruit after 
5 or 10 weeks of storage (8.0% dsb, w/w). 
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CHAPTER 4. ROLE OF STARCH STRUCTURE IN THE TEXTURE OF SQUASH 
AND STARCH FUNCTIONAL PROPERTIES. III. TEXTURE OF RAW AND 

COOKED WINTER SQUASH (Cucurbita maxima D.) FRUIT AT HARVEST AND 
AFTER STORAGE. 

A paper to be submitted to Journal of Agricultural and Food Chemistry 

David G. Stevenson, Jane A. Love & Jay-lin Jane 

Department of Food Science & Human Nutrition, Iowa State University, Ames, IA, 50011, 
USA. 

^Corresponding author (phone 1 515 294 9892; fax 1 515 294 8181; e-mail 
jj ane@iastate.edu) 

ABSTRACT 

Twelve winter squash cultivars (Cucurbita maxima D.), at harvest and 5 or 10 weeks storage, 

had fruit steamed 0,2,5, 10, 15 or 20 min and two-cycle compression was used to measure 

textural parameters, including hardness, fracturability and springiness. At harvest, raw fruit 

was harder for high-starch buttercup cultivars compared to low-starch Halloween-type. 

Hardness of fruit decreased with steaming time, and significant differences were observed 

among cultivars at almost all steaming times/storage combinations. After storage, many 

cultivars had increased hardness and fracturability of fruit, both raw and steamed 2 or 5 min. 

Buttercup cultivars had high fracturability when raw, low fracturability when steamed 20 

min. Springiness increased with steaming time, with Halloween-type squash high and 

buttercup cultivars low. A high-starch cultivar, Hyvita, differed in textural parameters from 

buttercups. Results suggest that starch increases hardness and fracturability, but decreases 

springiness of raw fruit, whereas starch decreases hardness and fracturability of cooked fruit. 

KEYWORDS: Texture; sensory; buttercup squash; winter squash; pumpkin; 

cucurbits; postharvest; storage 

mailto:ane@iastate.edu


www.manaraa.com

239 

INTRODUCTION 

Buttercup squash (Cucurbita maxima D.) is an important export crop for countries such as 

New Zealand, with the lucrative Japanese market the major focus. Japanese consumers are 

particular about sensory attributes of foods, and for buttercup squash, texture is an important 

component of quality, with geographical preferences ranging from dry, mealy to moist 

texture reported within Japan (1, 2). 

In last ten years, considerable amount of research has attempted to understand the 

determinants of texture in winter squash. Sensory evaluation of eleven tropical pumpkin (C. 

moschata D.) cultigens found that fruit flesh texture varied from smooth to a fibrous 

mouthfeel (3). Pumpkins rated as fibrous tended to break into thin spaghetti-like particles 

when crushed. Cultigens were also described as being either watery, with a loose particle 

mouthfeel, or pasty, with a sticky mouthfeel. 

Corrigan et al. (4) investigated the texture of four low- (all non-buttercups), and four 

high-starch content (all buttercups) C. maxima D. winter squash cultivars by using sensory 

evaluation and Instron Universal Testing Machine measurements after 4-5 and 9-10 weeks 

storage. For Instron Universal Testing Machine measurements, the low-starch cultivar, 

Warren Scarlet was softer than the other seven cultivars. The buttercup cultivar, Delica, had 

higher springiness than other buttercups after storage. Significant differences were found in 

cohesiveness, but all squash cultivars had very low cohesiveness. Sensory panelists rated 

high-starch buttercup cultivars to have similar brittleness, cohesiveness and hardness, but 

lower particle size, moistness and fibers relative to low-starch cultivars. 
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In order to meet Japanese consumer preferences, it is important to understand the 

determinants of squash texture. Daniel (3) found a high positive relationship between starch 

content and pastiness or smoothness of cooked pumpkin. Corrigan (4) reported high 

correlations between starch content and the sensory panel textural attributes of brittleness, 

cohesiveness, hardness, adhesiveness, particle size, mouthfeel and moistness, but only found 

starch content correlated to gumminess by using the Instron Universal Testing Machine. In 

our study, using the Instron Universal Testing Machine, we measured raw and steamed fruit 

flesh textural attributes of twelve C. maxima winter squash cultivars, obtained at harvest and 

after 5 or 10 weeks storage. From the same fruit as textural analysis, we have previously 

isolated starch and have characterized structural features (Chapter 2) and functional 

properties (Chapter 3). In a following publication, we will discuss the correlations between 

textural attributes of raw and cooked squash and starch structural and functional properties, at 

harvest and after storage. 

MATERIALS AND METHODS 

Plant Material. Twelve squash cultivars studied were fruit from the same completely 

randomized block planting described previously with the same cultivation, harvesting and 

storage procedures (Chapter 2). Squash cultivars studied were four buttercups (Cha Cha, 

Delica, Kurijiman and Sweet Mama), one cross of buttercup and Green Delicious (Hyvita), 

two Halloween-type (Big Max and Rouge Vif D'Etampes), one Hubbard-type (Warren 

Scarlet), one Crown-type (Whangaparoa Crown), one Native American Indian squash 

(Lakota) (5), and two non-commercially developed squash, one from Burkina Faso 

(Yogorou) and one from the Bolivian/Peruvian border (Zapallo Macre). 
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Steaming of Squash Fruit and Texture Analysis. Four fruit, from each of the three 

replicates for all 12 squash cultivars, were randomly selected as described previously 

(Chapter 2). All fruit skins were marked into quarters, and one quarter was randomly 

selected for texture analysis. From this quarter, six 3-cm wide at the equator, longitudinal 

segments were used for texture analysis. Depending on fruit size, allocation of segments for 

texture may be greater than one quarter of the fruit's circumference. Therefore, 

approximately two-thirds to three-quarters was randomly allocated for isolation of starch and 

the remainder for textural analysis, and the groundspot (part of squash fruit with skin 

discoloration due to contact with ground) was not excluded from the textural analysis. 

Squash fruit longitudinal segments, with skins remaining, were randomly selected to be 

steamed in a 10-cup size rice steamer (Zojirushi America Corporation, Commerce, CA, 

model NHS 18) for 0,2,5, 10, 15 or 20 min. The plane of the squash fruit skin was 

perpendicular to the water surface, so that the pieces of fruit did not impede heat flow. After 

each segment was steamed for its specified time, a 20 mm diameter apple corer (Oxo brand, 

BASF Corp., Mount Olive, NJ) with a recessed cutting edge, preventing further compression, 

was used to immediately remove a fruit cylinder, cut from the direction of seed cavity to 

skin. The fruit cylinder was then placed in a metal cylinder with cut grooves 12 mm apart, 

allowing a sliced fruit cylinder to have flat surfaces with height of 12 mm and width of 20 

mm, and skin excluded. Sliced fruit cylinders were placed on the base plate of the Instron 

Universal Testing Machine (Instron Corp., Canton, MA) with the side closest to skin against 

the base plate. The texture profile analysis was started exactly 40 seconds after removal of 

squash fruit from the steamer. Texture profile analysis of squash cylinders involved a two-
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cycle compression, with 75% compression of their original height, using an Instron Universal 

Testing Machine. Compression, using the 57 mm compression anvil (Instron part 2830-009), 

was at a crosshead speed of 30 mm/min. Measurements of hardness, fracturability, 

adhesiveness, cohesiveness, gumminess and springiness were made by using Series 12 

software (Instron Corp., Canton, MA) based on calculations described by Szczesniak (6) and 

Bourne (7). Hardness was defined as the maximum force of the first compression cycle that 

was not associated with the first fracture, unless the sample experienced first fracture at end 

of the first compression. Fracturability is the force at which material fractures in the first 

peak (compression force decreases). Springiness is the height that food recovers during the 

time that elapses between end of the first compression peak and start of the second 

compression peak. Adhesiveness is the negative force area between end of the first 

compression peak and start of the second compression peak. Cohesiveness is the ratio of 

positive force area during the second compression to that during the first compression. 

Gumminess is calculated as hardness x cohesiveness. 

Statistical Analysis. All statistical significance tests were calculated using SAS (8) and 

applying Tukey difference test (9) at the 5% level of significance. 

RESULTS AND DISCUSSION 

Squash Fruit Hardness at Harvest. Hardness of steamed squash fruit, at harvest, is shown 

in Table 1. Comparing with other fruits and vegetables, uncooked squash fruit is very hard 

at harvest (10). Differences in hardness of uncooked squash fruit among cultivars were 

highly significant (P < 0.0001). The four buttercup squash cultivars, which have high starch 

contents (Chapter 2), had hardness when raw greater than 850 N and were significantly 
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harder than all other cultivars except Lakota. Hardness at harvest of the raw high-starch 

squash cultivars separated the closely related buttercup-cross, Hyvita, from the buttercup 

cultivars, as raw Hyvita's hardness was significantly lower, only 512 N. The two 

Halloween-type squash had the softest raw fruit, and both were significantly softer than all 

other cultivars except Hyvita. 

Most squash cultivars steamed for 2 min experienced some reduction in hardness, and 

trends in significant differences among cultivars were similar to raw fruit (Table 1). After 5 

min steaming, the range in hardness of squash fruit among cultivars was reduced with only 

Lakota and Sweet Mama being significantly harder than Big Max, Hyvita and Rouge Vif 

D'Etampes. Ten min of steaming resulted in greater variability in hardness measurements 

for squash fruit. The only significant difference observed was that Whangaparoa Crown and 

Yogorou were harder than all other cultivars, but differences among cultivars were still 

highly significant (P < 0.0001). The greatest magnitude of difference among hardness of 

squash cultivars was observed after 10 min steaming, as Yogorou hardness was about 7.5 

times higher than Hyvita. Hardness of squash fruit after 15 min steaming ranged from 14 to 

91 N for the squash cultivars, but there were still significant differences (P = 0.005). 

Yogorou fruit steamed for 15 min was significantly harder than all other cultivars except Big 

Max, Cha Cha, Lakota and Whangaparoa Crown. Despite the difference in hardness between 

cultivar extremities being only 25 N (range 9-34 N) after 20 min steaming, squash cultivar 

hardness was still significantly different (P - 0.001). The high-starch content Cha Cha fruit, 

steamed for 20 min, was significantly harder than the high-starch content Hyvita and Big 

Max, Zapallo Macre and Rouge Vif D'Etampes. Kurijiman and Yogorou fruit steamed for 

20 min were also significantly harder than Rouge Vif D'Etampes. 
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Squash Fruit Hardness After Storage. Hardness of raw and cooked squash fruit, stored for 

5 weeks, is shown in Table 2. Squash cultivars were significantly different for hardness of 

uncooked fruit (P < 0.0001). After 5 weeks storage, greater differences in the hardness of the 

high-starch content squash cultivars occurred. The two high-starch content buttercups, Cha 

Cha, and Kurijiman, were both significantly harder than the high-starch content Hyvita and 

Sweet Mama. Sweet Mama and Delica were also significantly harder than Hyvita. The 

lower hardness of Sweet Mama after 5 weeks storage could be due to its greater decrease in 

starch content, relative to the other buttercup cultivars (Chapter 2). Kurijiman raw fruit was 

harder than all other cultivars except Cha Cha and Delica. Both Halloween-type squash 

cultivar's uncooked fruit were soft with Big Max significantly softer than all cultivars except 

Hyvita and Rouge Vif D'Etampes. 

After just 2 min steaming, hardness of some 5-week stored medium-starch content 

squash cultivars, Lakota, Warren Scarlet and Yogorou, were not significantly different from 

that of the four buttercup cultivars (Table 2), but significant differences among cultivars 

were observed (P < 0.0001). Although not significantly different, hardness of 5-week stored 

Sweet Mama squash steamed 2 min was considerably lower than the three other buttercups. 

This could be attributed to its fast starch degradation. Halloween-type squash cultivars were 

softest after 2 min steaming but were not significantly different from Hyvita, Whangaparoa 

Crown and Zap alio Macre. Considerable changes in relative hardness of the squash cultivars 

occurred after 5 min steaming compared with that of 2 min. The high-starch content 

buttercup, Cha Cha, was significantly softer than the other three buttercups after 5 min 

steaming. Only Lakota and Warren Scarlet, two non-buttercup cultivars, were significantly 

harder than the two Halloween-type cultivars. We have previously observed Lakota, stored 
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for 5 weeks, to have the greatest hardness after 5 min steaming for squash grown in 1998 

(unpublished data). For squash stored 5 weeks, steaming for 10 min resulted in large 

magnitudes of difference in hardness with Whangaparoa Crown ten times harder than two 

buttercups, Cha Cha and Sweet Mama. Additionally Whangaparoa Crown was harder than 

all cultivars except Lakota and Yogorou. After 15 min steaming, Whangaparoa Crown was 

still the hardest but was only significantly harder than Hyvita and Rouge Vif D'Etampes. 

The two Halloween-type cultivars were the softest when raw, were harder than several 

cultivars after 10 min steaming but were the softest cultivars again after 20 min steaming. 

Despite similarity in low-starch content after 5 weeks storage (Chapter 2), Yogorou was 

hardest, and Big Max and Rouge Vif D'Etampes were softest, after 20 min steaming. The 

three high-starch content (> 33% DW) buttercup cultivars after 5 weeks storage, Cha Cha, 

Delica and Kurijiman, had almost parallel changes in hardness throughout steaming. 

Hardness of steamed squash fruit, stored for 10 weeks is shown in Table 3. 

Surprisingly, no overall trend of fruit softening was observed during the 10 weeks storage as 

most cultivar's hardness of raw fruit increased or remained constant. Although the four raw 

buttercup cultivars, which all had greater than ten percent of dry matter as starch after 10 

weeks storage, were considerably harder than other squash cultivars, combined they were 

only significantly harder than the two Halloween-type cultivars. Cha Cha raw fruit was also 

significantly harder than Hyvita, Lakota, Whangaparoa Crown, Yogorou and Zapallo Macre, 

which all had significantly lower starch content (Chapter 2). After steaming for 2 min, the 

Halloween-type cultivars that had the lowest starch content (Chapter 2) were softer than all 

other cultivars except Hyvita. Similar to the trend observed after 5 weeks storage, squash 

fruit stored for 10 weeks had considerable changes in relative hardness between 2 and 5 min 
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steaming. Cha Cha, which was the hardest when raw, was not significantly harder than the 

two Hallo ween-type cultivars after 5 min steaming, and was softer than Lakota, Warren 

Scarlet and Zapallo Macre. Whangaparoa Crown, stored for 10 weeks and steamed for 10 

min, was eleven times harder than Cha Cha, and was also significantly harder than Delica, 

Hyvita, and Kurijiman. There were no significant differences in hardness for squash fruit, 

after being stored for 10 weeks and steamed for 15 or 20 min, which was not observed for 

fruit at harvest or stored for 5 weeks (Table 1 and 2). 

Our results for hardness are difficult to compare with that of Corrigan et al. (4) 

because in the latter study, squash cultivars were steamed for just one time per cultivar, but 

this cooking time varied depending on cultivar, because tenderness was used as a marker to 

determine cooking time. Comparing with our results, the range in hardness among the eight 

cultivars studied by Corrigan et al. (4) is narrow, most likely because cooking all fruit until 

tender minimized intrinsic hardness variation. Corrigan et al. (4) also reports that Warren 

Scarlet had significantly lower hardness than all other cultivars, particularly buttercups, but 

we did not observe Warren Scarlet being softer than buttercups at any of the later steaming 

times (Table 2 and 3). Corrigan et al. (4) reports Delica and Sweet Mama fruit hardness, 

after storage, to be significantly softer than Kurijiman, but in our findings there are no 

significant differences in hardness among any of the buttercup cultivars, at the later steaming 

times. Additionally Corrigan et al. (4) uses just one fruit per cultivar for Instron Universal 

Testing Machine and sensory panel analysis, resulting in no measure of variation for the 

textural parameters, whereas in our study, textural parameters for each cultivar at each 

storage time and steaming time consists of measurements from twelve fruit. 



www.manaraa.com

247 

Squash Fruit Fracturability at Harvest. Fracturability of squash fruit, at harvest and 

steamed up to 20 min, is shown in Table 4. Fracturability of raw fruit was significantly 

different among cultivars (P < 0.0001) and all squash cultivars fractured. For raw fruit, four 

buttercup cultivars required greater force to fracture than did other cultivars with Cha Cha 

and Sweet Mama significantly higher than Big Max, Hyvita, Rouge Vif D'Etampes, Warren 

Scarlet and Zapallo Macre. Similar to hardness, Halloween-type cultivars had the lowest 

force required to fracture squash fruit. Hyvita, while not significantly different from all 

buttercup cultivars, required a considerably lower force to fracture and this was another 

distinctive textural attribute that separated this cultivar from the other high starch content 

cultivars. After 2 min steaming of harvest fruit, differences among squash cultivars in 

fracturability was less than that observed for hardness, with the only significant difference (P 

< 0.0001) observed being two Halloween-type cultivars that required less force to fracture 

than Cha Cha, Delica, Lakota, Sweet Mama and Whangaparoa Crown. After 5 min 

steaming, Lakota, from fruit at harvest, required significantly higher force to fracture than 

Big Max, Cha Cha, Delica, Hyvita, Kurijiman and Rouge Vif D'Etampes, similar to 

hardness. Lakota and Whangaparoa Crown fruit at harvest, steamed for 10 min, required 

substantially greater force to fracture than other cultivars. A similar trend was observed for 

fruit steamed 15 min, but force required to fracture was greatly reduced for all cultivars 

except Yogorou. After 20 min steaming, squash, from fruit at harvest, fractured typically 

between 3-5 N, but Yogorou fracturing upon 11N force was significantly higher than all 

cultivars except Lakota and Whangaparoa Crown. 

Squash Fruit Fracturability After Storage. After 5 weeks storage, raw squash fruit 

showed a similar trend to hardness with the four buttercup cultivars requiring the greatest 
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force to fracture, and was significantly higher than Big Max, Hyvita and Rouge Vif 

D'Etampes (P < 0.0001) (Table 5). Halloween-type squash required the least force to 

fracture for fruit uncooked and steamed 2 min. After 5 min steaming, the biggest change was 

the large reduction in force required to fracture Cha Cha fruit, although this was only 

significantly lower than the non buttercups, Lakota, Warren Scarlet, Whangaparoa Crown 

and Yogorou. Lakota fruit after 5 weeks storage, like that of at harvest, required 

considerably greater force to fracture for fruit steamed 10 min, but unlike that at harvest, 

fracturability was still much higher than other cultivars after 15 min steaming. Fruit, stored 

for 5 weeks, fractured under low force after 20 min steaming, but Lakota, Whangaparoa 

Crown and Yogorou fractured under significantly higher force than all other cultivars except 

Warren Scarlet (P < 0.0001). 

Fracturability of squash fruit stored for 10 weeks and steamed up to 20 min is shown 

in Table 6. Halloween-type cultivars, raw, required the least amount of force to fracture, 

which was significantly lower than Cha Cha, Delica, Kurijiman, Lakota and Whangaparoa 

Crown. Despite this, force required to fracture raw Halloween-type squash increased during 

storage. This trend was also observed by all other cultivars except Sweet Mama, Hyvita and 

Cha Cha. This phenomenon is difficult to explain. Starch within cells of uncooked fruit 

would be expected to provide some support to the cell walls when compression is applied, 

requiring greater force to find a plane of weakness in the cell-wall matrix. However all 

squash cultivars, except Big Max, experienced substantial degradation of starch during 

storage, therefore not explaining why force required to fracture for the three storage times 

remained constant. Additionally, Big Max had little starch to lose during storage and 

therefore this theory does not explain its increase in force required to fracture. Squash, like 
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all fruit, contain disproportionately greater amounts of pectin (11) than other plant tissues, 

but function of pectin in fruit is to allow rapid fruit softening (12), making it edible. 

Therefore a substantial loss of starch, creating a greater proportion of pectin, would be 

expected to decrease hardness and the force required to fracture squash fruit. An increase in 

proportion of non-pectic cell-wall polysaccharides (NPCWP) is unlikely to cause increased 

hardness and resistance to fracture since Big Max's dry matter, at harvest, is predominantly 

NPCWP and has the softest fruit (Table 1) with nearly the lowest fracturability (Table 4). 

Eight squash cultivars had higher fracturability after 2 min steaming for fruit stored 

10 weeks compared with 5 weeks storage. Lakota, stored for 10 weeks, had significantly 

higher fracturability after 2 min steaming than Big Max, Cha Cha, Hyvita, Rouge Vif 

D'Etampes and Warren Scarlet. Lakota, Whangaparoa Crown, Yogorou and Zap alio Macre, 

with low starch contents after 10 weeks storage (< 3% DW), all had very high forces required 

for fruit fracture (> 430 N), when steamed for 5 min, relative to other cultivars, and all four 

cultivar's fracturability were significantly higher than the high-starch content (> 10% DW) 

buttercup cultivars. The same four low-starch content squash cultivars had higher 

fracturability after 10 min steaming than other cultivars, although only Lakota and 

Whangaparoa Crown were significantly different from the other eight cultivars. Although 

Cha Cha fractured at 17 times less force than Zapallo Macre when fruit were steamed for 15 

min, high variability at this cooking time meant that no significant differences were 

observed. After 20 min steaming, for fruit stored 10 weeks, buttercup squash cultivars had 

fracturability between 2 and 4 N, significantly lower than Yogorou. Fracturability of cooked 

squash by Corrigan et al. (4) was not reported because some cultivars did not fracture, 

therefore comparison with our results is not possible. 
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Squash Fruit Springiness at Harvest. Springiness of squash fruit, at harvest, steamed up to 

20 min, is shown in Table 7. Springiness of raw fruit, at harvest, was significantly different 

among squash cultivars (P = 0.004), with Big Max, Lakota and Whangaparoa Crown more 

springy than Cha Cha. Raw buttercup squash fruit tended to be less springy than other 

cultivars at harvest. After 2 and 5 min steaming, the only significant difference (P = 0.05) 

was the highest starch content squash, Cha Cha, was less springy than the lowest starch 

content squash, Big Max. For fruit at harvest, greater numbers of cultivar differences for 

springiness were observed for squash steamed 10 to 20 min. For most squash cultivars, 

springiness increased with increasing steaming time. Lakota was most springy after 10 min 

steaming and springiness decreased considerably thereafter. After 10 min steaming, for fruit 

at harvest, the five high-starch content cultivars had the lowest springiness, with Big Max 

and Rouge Vif D'Etampes significantly springier than Cha Cha, Delica, Hyvita and Sweet 

Mama. Big Max, with very little fruit starch content, steamed for 15 min, had significantly 

higher springiness than the high starch containing Delica, Hyvita and Sweet Mama, and was 

also springier than Warren Scarlet. The two Halloween-type squash, after 20 min steaming, 

had the highest springiness. 

Squash Fruit Springiness After Storage. Squash cultivars differed significantly for 

springiness of raw fruit, stored for 5 weeks (P = 0.002) (Table 8). Kurijiman, uncooked, was 

significantly less springy than Big Max, Cha Cha, Rouge Vif D'Etampes and Whangaparoa 

Crown, and Kurijiman, after 5 weeks storage, had the lowest springiness of all cultivars at all 

steaming times. Similar to fruit at harvest, Lakota stored for 5 weeks had highest springiness 

after 10 min steaming and then reduced considerably thereafter. The four high-starch content 

buttercup cultivars, stored for 5 weeks, were significantly less springy than the low-starch 
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content Rouge Vif D'Etampes and Whangaparoa Crown (P < 0.0001). After 20 min 

steaming of fruit stored for 5 weeks, the two Halloween-type cultivars, plus Whangaparoa 

Crown, were considerably springier than other cultivars with the low-starch content, and 

springiness of Rouge Vif D'Etampes was significantly higher than the high-starch content 

Kurijiman and Sweet Mama. 

After 10 weeks storage, raw fruit of Halloween-type cultivars had higher springiness 

than other cultivars, but the only significant difference was that Big Max was springier than 

Warren Scarlet (P = 0.04) (Table 9). No significant differences in springiness were observed 

after 2 min steaming for fruit stored 10 weeks, but after 5 min steaming, springiness 

increased markedly for four cultivars, Rouge Vif D'Etampes, Sweet Mama, Whangaparoa 

Crown and Yogorou, which were all significantly springier than Warren Scarlet (P - 0.01). 

Four low-starch content cultivars, Big Max, Lakota, Rouge Vif D'Etampes and Whangaparoa 

Crown, stored for 10 weeks, had significantly higher springiness than the high-starch content 

Cha Cha and Delica after 10 min steaming (P = 0.0003). Rouge Vif D'Etampes's 

springiness increased considerably between 10 and 15 min steaming, and was significantly 

higher than Cha Cha, Delica, Kurijiman and Warren Scarlet (P < 0.0001). After 20 min 

steaming of fruit stored for 10 weeks, Halloween-type cultivars were significantly springier 

than Warren Scarlet (P = 0.009). 

Corrigan et al. (4) reported the buttercups Delica and Kaboten, after 5 weeks storage, 

to have significantly greater springiness than other buttercups, but in our study, there was no 

significant difference between Delica and other buttercup cultivars for springiness at the later 

steaming times (Table 8). Once again, variation in cooking time, and the absence of 

accounting for variation among fruit of the same cultivar due to the use of just one fruit per 



www.manaraa.com

252 

cultivar by Corrigan et al. (4) could easily lead to findings that differ from our study which 

attempted to account for individual cultivar fruit variation by sampling four fruit from each 

of three replicate blocks. 

Adhesiveness, Cohesiveness and Gumminess of Squash Fruit. Squash fruit were found to 

lack any adhesiveness for all cultivars, at all storage times and all cooking times. Despite 

finding significant differences in sensory panel ratings of squash cultivar adhesiveness, 

Corrigan et al. (4) did not comment on adhesiveness measurements using the Instron 

Universal Testing Machine. Although Corrigan et al. (4) reported significant differences 

among cultivars for cohesiveness, their values and our own values were so low that we did 

not report results as we conclude that cohesiveness is not measured well using an Instron 

Universal Testing Machine. Significant differences in cohesiveness among squash cultivars, 

observed using sensory panels (4), also suggests measurements of cohesiveness by Instron 

Universal Testing Machine are ineffective. Since gumminess is the product of cohesiveness 

and hardness, and cohesiveness was almost zero, we did not attempt to calculate gumminess. 
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Table 1 

Hardness (N) of squash fruit, at harvest, steamed for 0 to 20 minutes*. 

Steaming Time (min) 
Cultivar 0* 2 5 10 15 20 

Big Max 312et 312' 250" 137b 48* 15^ 
Cha Cha 1083a 940a 380* 63b 43ab 34a 

Delica 872b 867ab 316ab 49b 27b j 9 abc 

Hyvita 512de 506ef 244b 42b 22b 15bc 

Kurijiman 909ab 789abcd 345* 60b 33b 28* 
Lakota 754bc ^ggabcde 529' 148b 51ab 23abe 

Rouge Vif D'Etampes 304f 346^ 245b 73b 14b 9C 

Sweet Mama 853" 801abc 510a 56b 24b |yabc 

Warren Scarlet 549cd 535^ 354ab 123b 30b jyabc 

Whangaparoa Crown 581cd 528^ 35 l a b  293' 46* 2 ̂  abc 

Yogorou 595^ 653^ 429ab 313" 91a 31ab 

Zapallo Macre 541d 554=^ 382ab 95b 23b 15^ 
P< 0.0001* P< 0.0001 f = 0.008 P < 0.0001 f = 0.005 f =0.001 

Values are from four fruit for each of three replicates. 
"Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 



www.manaraa.com

Table 2 

Hardness (N) of squash fruit, after 5 weeks of storage, steamed for 0 to 20 minutes*. 

Steaming Time (min) 
Cultivar 0 2 5 10 15 20 

Big Max 291» 282* 239«i 186bcd 84* 13bc 

Cha Cha 968* 868" 256^ 41d 31* 22*c 
Delica 943*° 850* ^ | g abed 57cd 30* 23"bc 
Hyvita 455efg 416def 242cd 53d 18b 14bc 

Kurijiman 1012" 873' 404abcd 66^ 31* 23*= 

Lakota 769bcd 763*' 594' 266"* ygab 26* 
Rouge Vif D'Etampes 348* 327*f 199d 96^ 19b I I e  

Sweet Mama 730^ 640*^ 397abcd 43d 22* 15* 
Warren Scarlet 625^ 633*^ 494* | gybed 43* 19abc 

Whangaparoa Crown 554def 591bcde 448abe 423" 94" 23*c 
Yogorou 681de 612*^ 430

abc 
78* 32" 

Zapallo Macre 569def ^ j^cdef 362^ 136cd 36* 17bc 

P< 0.0001* P < 0.0001 P< 0.0001 P< 0.0001 P = 0.003 P = 0.0003 

Values are from four fruit for each of three replicates. 
"Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability off-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 3 

Hardness (N) of squash fruit, after 10 weeks of storage, steamed for 0 to 20 minutes*. 

Steaming Time (min) 
Cultivar 0* 2 5 10 15 20 

Big Max 3 61e± 381cd g ^ y abc 156* 30 14 
Cha Cha 949* 762a 204e 28b 24 21 
Delica 862"* 778a 361"* 54b 24 17 
Hyvita 500def 448bcd 232* 44b 23 12 
Kurijiman 898ab 833" ^ abc 42b 21 16 
Lakota 659bcd 687ab 503* 177* 72 24 
Rouge Vif D'Etampes 318f 316d 201e 89* 55 9 
Sweet Mama 672"*^ 663* 355"* 75* 26 16 
Warren Scarlet 74Qabcd G

\ 
OO

 
i- 521" 150* 36 28 

Whangaparoa Crown 61701e 595abc 457"* 323' 165 33 
Yogorou 614cde 614'* 410"* 190* 69 27 
Zapallo Macre 594cdef 631"* 496* 206* 118 56 

P< 0.0001* P < 0.0001 il o
 

o
 

o
 

f = 0.01 P = 0.35 P = 0.12 

Values are from four fruit for each of three replicates. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in 
the respective column. 
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Table 4 

Fracturability (N) of squash fruit, at harvest, steamed for 0 to 20 minutes*. 

Steaming Time (min) 
Cultivar 0# 2 5 10 15 20 

Big Max 255^ 239" 140" 12b ybc 5b 

Cha Cha 862' 659' 163b 17b 6° 4b 

Delica 745ab 594' 134b 14b ybc 3b 

Hyvita 489bcd 416* 147b 15b 7° 3b 

Kurijiman 735ab 490* 167b 14b 5° 4b 

Lakota 703ab 709' 508' 108* 16' 8* 
Rouge Vif D'Etampes 252d 247b 173b 29b 4C 3b 

Sweet Mama 795' 738' 363* 19b 6° 3b 

Warren Scarlet 517* 425* 252* 14b gbc 4b 

Whangaparoa Crown 646* 577' 360* 154' 14* yab 

Yogorou 633* 563* 320* 19b 16' na 
Zapallo Macre 493bcd 423* 254* 30b gbc 3b 

P< 0.0001* P< 0.0001 f = 0.002 P = 0.0004 P < 0.0001 f = 0.001 

Values are from four fruit for each of three replicates. 
# Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 5 

Fracturability (N) of squash fruit, after 5 weeks of storage, steamed for 0 to 20 minutes*. 

Steaming Time (min) 
Cultivar 0# 2 5 10 15 20 

Big Max 273= 273=" 142bc 17b 14*" 3C 

Cha Cha 873' 698*" 22= 14b 6b 4C 

Delica 829* 635*"=d 194bc 15" 6b 3° 

Hyvita 513"= 418bcd 128bc 15b 6b 4C 

Kurijiman 898* 710*" 273bc 18" 7b 3C 

Lakota 806*" 821* 641* 279* 42* 11*" 
Rouge Vif D'Etampes 264= 260d 125bc 34b 7b 4C 

Sweet Mama 852* 657*"= 204bc 17b 7b 3C 

Warren Scarlet 693*" 509*"cd 400ab 87b 14ab 6bc 

Whangaparoa Crown 660*" 605abcd 407ab 131*" 17ab 10*b 

Yogorou 684*" 556*^ 428*" 16" 18=" 13* 
Zapallo Macre 591*" 538*"cd 237"= 40b 13a" 4° 

P< 0.0001* P = 0.0004 P< 0.0001 P = 0.0002 P = 0.02 P< 0.0001 

Values are from four fruit for each of three replicates. 
# Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 6 

Fracturability (N) of squash fruit, after 10 weeks of storage, steamed for 0 to 20 minutes*. 

Steaming Time (min) 
Cultivar 0# 2 5 10 15 20 

Big Max 33/* 344cd 254abcd 21b 10 g abed 

Cha Cha 861abc 459bcd 21d 13b 4 2=d 

Delica 922* 622*= 184bcd 16b 6 2d 

Hyvita 464cde 388°" 99d 20b 8 2=d 

Kurijiman 1003" 753* 84d 17b 6 4bcd 

Lakota 872* 865= 438*' 266' 28 11'"° 
Rouge Vif D' Etampes 289* 264d 83d 33b 5 g bed 

Sweet Mama gggabcd 619*° 81d 23b 8 g bed 

Warren Scarlet 595bcde 527bcd 118cd 21b 11 gabed 

Whangaparoa Crown 798*° 721* 535' 229* 14 12* 
Yogorou 695*°^ 609*° 431*° 162* 30 14* 
Zapallo Macre 621*°^ 558*°^ 455* 98* 69 2 Qabcd 

P< 0.0001* P< 0.0001 P< 0.0001 P< 0.0001 P = 0.31 P= 0.0001 

Values are from four fruit for each of three replicates. 
# Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 7 

Springiness (mm) of squash fruit, at harvest, steamed for 0 to 20 minutes*. 

Steaming Time (min) 
Cultivar 0# 2 5 10 15 20 

Big Max 12.74' 12.72' 13.00" 13.31" 13.32' 13.30"" 
Cha Cha 11.88" 12.10" 12.30" 12.67bcd 13.04'"° 13.07abcd 

Delica 12.20* 12.27* 12.52* 12.59*" 12.79bcd 12.97*cd 

Hyvita 12.31* 12.34* 12.72* 12.22= 12.44d 12.94'"°^ 
Kurijiman 12.14* 12.27* 12.60* 12.71abcd 12.93*°d 12.97abcd 

Lakota 12.53' 12.50* 12.84* 13.20* 13.09*° 12.86bcd 

Rouge Vif D' Etampes 12.42* 12.62* 12.89* 13.30= 13.27* 13.34" 
Sweet Mama 12.45* 12.34* 12.71* 12.58cd 12.72cd 13.09*° 
Warren Scarlet 12.35* 12.32* 12.72* 12.76abed 12.43d 12.62d 

Whangaparoa Crown 12.57' 12.65* 12.92* 13.22* 13.07*° 13.11abc 

Yogorou 12.17* 12.17* 12.78* 13.02*° 12.83'"°^ 12.80cd 

Zapallo Macre 12.35* 12.45* 12.68* 12.99*° 12.93*°d 13.00abcd 

P = 0.004* P = 0.05 P = 0.05 P< 0.0001 P< 0.0001 P = 0.0007 

Values are from four fruit for each of three replicates. 
# Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 8 

Springiness (mm) of squash fruit, after 5 weeks of storage, steamed for 0 to 20 minutes*. 

Steaming Time (min) 
Cultivar 0 2 5 10 15 20 

Big Max 12.68* 12.72" 12.80* 13.14* 13.12* 13.18* 
Cha Cha 12.43" 12.57* 12.68* 12.74"° 12.87*° 12.97* 
Delica 12.19* 12.31* 12.60* 12.48cd 12.40cde 12.53* 
Hyvita 12.41* 12.49* 12.95' 12.87*° 12.62bcde 12.77* 
Kurijiman 11.71" 11.98b 12.32" 12.12d 12.05e 12.36" 
Lakota 12.32* 12.25* 12.70* 13.19* 12.99*° 12.78* 
Rouge Vif D'Etampes 12.54" 12.54* 12.87* 13.20' 13.27" 13.27' 
Sweet Mama 12.06* 12.33* 12.53* 12.48cd 12.21de 12.43b 

Warren Scarlet 11.98* 12.07b 12.39* 12.87*° 12.48cde 12.46* 
Whangaparoa Crown 12.60s 12.56* 12.91' 13.27" 13.14* 13.13* 
Yogorou 12.16* 12.06" 12.70* 12.97* 12.83abcd 12.71* 
Zapallo Macre 12.17* 12.29* 12.63* 12.91*° 12.89*° 12.80* 

P = 0.002* P = 0.003 P = 0.009 P < 0.0001 P< 0.0001 f = 0.005 

Values are from four fruit for each of three replicates. 
# Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 9 

Springiness (mm) of squash fruit, after 10 weeks of storage, steamed for 0 to 20 minutes*. 

Steaming Time (min) 
Cultivar 0 #  2 5 10 15 20 

Big Max 12.55' 12.61 12.57* 13.03' 13.09* 13.18' 
Cha Cha 11.97* 12.29 12.55* 12.36"= 12.33"= 12.49* 
Delica 11.84* 12.08 12.50* 12.27= 11.87= 12.32* 
Hyvita 12.19* 12.28 12.76' 12.58*= 12.49'"= 12.80* 
Kurijiman 11.86* 12.13 12.61* 12.69*= 12.30"= 12.46* 
Lakota 11.78* 11.93 12.47* 13.05' 13.00* 13.03* 
Rouge Vif D'Etampes 12.44* 12.27 12.92' 13.08' 13.21' 13.26' 
Sweet Mama 12.37* 12.28 12.90' 12.83*= 12.49*= 12.52* 
Warren Scarlet 11.72" 11.97 11.90" 12.77*= 12.28"= 12.07" 
Whangaparoa Crown 12.32* 12.35 12.75' 13.02' 12.96* 12.88* 
Yogorou 12.34* 12.39 12.72' 12.94* 12.78* 12.76* 
Zapallo Macre 12.23* 12.17 12.58* 12.88* 12.93* 12.82* 

P =  0.04* P = 0.44 f = 0.01 P = 0.0003 P< 0.0001 P = 0.009 

Values are from four fruit for each of three replicates. 
# Values with different letters denote differences at the 5% level of significance for each comparison between 
cultivars in the respective column. 
*  P  represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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CHAPTER 5. ROLE OF STARCH STRUCTURE IN TEXTURE OF SQUASH AND 
STARCH FUNCTIONAL PROPERTIES. IV. CORRELATIONS AMONG STARCH 

STRUCTURE, STARCH FUNCTIONALITY AND TEXTURE OF WINTER 
SQUASH (Cucurbita maxima D.) FROM FRUIT AT HARVEST AND AFTER 

STORAGE. 

A paper to be submitted to Journal of Agricultural and Food Chemistry 
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USA. 

Corresponding author (phone 1 515 294 9892; fax 1 515 294 8181; e-mail 
i jane@iastate.edu) 

ABSTRACT 

Correlations among starch structure, starch functionality and raw or cooked texture of winter 

squash fruit were investigated. Correlations were dependent on fruit storage time and 

cooking time. Both water and starch content of squash were correlated to hardness, 

fracturability and springiness. Apparent amylose correlated negatively to hardness and 

fracturability, but absolute amylose correlated positively to hardness and fracturability, 

suggesting long-chain amylopectins play a role in texture. Amylopectin molecular weight 

and polydispersity correlated positively to hardness. Hardness and fracturability of squash 

fruit was always correlated positively to short (DP < 12) and very long (DP >37) 

amylopectin branch chain-lengths and negatively correlated to intermediate amylopectin 

branch chain-lengths (DP 13-36), regardless of storage time. Hardness was negatively 

correlated to gelatinization temperatures. Paste viscosity was negatively correlated to 

hardness and fracturability, while breakdown was positively correlated to springiness. 

Amylose was positively correlated to paste viscosity. Higher molecular weight amylopectin, 

with lower polydispersity, results in lower gelatinization temperatures. 

mailto:jane@iastate.edu
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KEYWORDS: Starch structure; starch function; squash; pumpkin; cucurbits; texture; 
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INTRODUCTION 

Winter squash is an important export crop, for countries such as New Zealand, with the 

lucrative Japanese market receiving the greatest attention. Japanese consumers vary in their 

textural preference of cooked winter squash, depending on geographical location (1, 2). In 

order to meet Japanese consumer demands, the textural determinants of cooked winter 

squash need to be unraveled. Winter squash have previously been reported to have starch 

content above 60% of the dry matter (3), leading to the postulate that starch properties could 

be influencing winter squash texture. 

Few studies have investigated the role of starch properties in texture of fruit and 

vegetable crops. Widespread opinion in the scientific community is that fruit and vegetables 

soften solely due to demethylation of pectin, resulting in pectin degradation and a loss of 

middle lamellae that holds the cellulose/hemicellulose cell wall matrix together (4, 5). Starch 

is typically considered to have no involvement in fruit and vegetable texture or is overlooked 

when investigating textural determinants. Literature on the role of potato composition in 

cooked texture is useful for comparisons due to its high proportion of dry matter as starch. 

Steamed potatoes have been shown to fracture between cells preferentially alongside the cell 

wall, with the degree of intercellular spaces determining texture (6). Subsequent studies 

showed mealy potatoes had more cell wall material per unit cell surface area than nonmealy 

potatoes (7). Further studies of cooked potato microstructure showed that swelling of 

gelatinized starch had no influence on texture, but destruction of cell walls resulted in 
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softening (8). Recently evidence of starch playing a role in cooked potato texture has 

emerged. Modeling starch gelatinization kinetics in potatoes showed that starch 

gelatinization is completed at early cooking times and contributes to texture during 

gelatinization process (10). Studies of cooked sweet potato found no evidence that textural 

properties resulted from cell wall structure, but instead found that enzymic degradation of 

starch induced textural changes (10). Starch content has been implicated in cooked potato 

crisp texture (11) and another study found starch content was a powerful variable that 

encompassed the major part of potato attributes affecting texture (12). A combination of 

starch swelling and cell wall degradation resulting in soggy potato texture has been reported 

(13). 

Currently the main agricultural commodity in which a well established relationship 

between starch structure or functionality and cooked texture has been made is rice. Greatest 

emphasis has been the relationship between amylopectin fine structure and cooked rice 

texture. Proportion of long amylopectin B-chains, and proportion of these chains in the 

exterior regions, carrying non-reducing ends, was found to be strongly related to cooked rice 

texture (14, 15, 16). Low-amylose and waxy rice were found to provide hard and sticky 

texture (17,18). Rice starch pasting properties have also been found to be highly correlated 

with textural parameters (19, 20). 

The objectives of this study are to determine the role of starch structure in the texture 

of raw and cooked winter squash fruit, the role of starch functionality in the texture of raw 

and cooked winter squash fruit and the role of squash starch structure in starch functional 

properties. We have previously studied extensively, from winter squash fruit at harvest, and 

stored for 5 or 10 weeks, the starch structural properties (Chapter 2), starch functional 
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properties (Chapter 3), and textural attributes of raw and cooked fruit (Chapter 4). In this 

paper we investigate the correlations among starch structure, starch functionality and textural 

attributes of winter squash fruit. 

MATERIALS AND METHODS 

Plant Material, Starch Extraction, Starch Structural Analysis, Starch Functional 

Analysis. Twelve winter squash (Cucurbita maxima D.) cultivars (3 replicates/cultivar), 

described previously (Chapter 2) were cultivated and had starch extracted from fruit at 

harvest, and after 5 or 10 weeks storage, as described previously (Chapter 2). Starch 

structural analysis included starch content, apparent and absolute amylose content, 

amylopectin molecular weight, amylopectin gyration radii, amylopectin branch chain-length 

distribution and percent crystallinity. All methods of starch structural analysis have been 

described previously (Chapter 2). Starch functional analysis included thermal properties of 

native and retrograded starch, pasting properties and gel firmness and stickiness. All 

methods of starch functional analysis have been described previously (Chapter 3). 

Squash Fruit Texture Measurements. Textural parameters measured were hardness, 

fracturability and springiness of squash fruit from all 12 cultivars, for all three replicates, at 

each of the three storage times. Fruit textural measurements were made on raw, and fruit 

steamed for five different times between 2 and 20 min as described previously (Chapter 4). 

Correlation Analysis. Starch Structural, starch functional and squash fruit textural attributes 

were correlated using SAS (21) and the PROC CORR function specifying use of the Pearson 

correlation coefficient. A 5% level of statistical significance was used to discriminate 

correlations of importance. Means of the twelve squash cultivars were used for the 
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correlations. Since not all squash cultivars yielded sufficient levels of starch to conduct all 

starch structural and functional analyses, the number of squash cultivar means (n) correlated 

varied depending on parameters correlated, as follows: n = 12 for all correlations involving 

entirely textural parameters, water or starch content; « = 11 for any correlation involving, 

from fruit at harvest, starch DSC thermal analysis, iodine affinities of starch, apparent 

amylose content, absolute amylose content, isoamylase-debranched amylopectin chain-length 

measured using high-performance anion-exchange chroamtatography (HPAEC), isoamylase-

debranched amylopectin chain-length measured using high-performance size-exclusion 

chromatography (HPSEC), amylopectin molecular size and polydispersity measured using 

HPSEC, gyration radii, percent crystallinity, gel firmness, gel stickiness, and all starch RVA 

pasting analysis; n = 8 for any correlation involving, from fruit stored for 5 weeks, DSC 

thermal analysis, iodine affinities, apparent amylose content, absolute amylose content, 

isoamylase-debranched amylopectin chain-length measured using HPAEC, isoamylase-

debranched amylopectin chain-length measured using HPSEC, amylopectin molecular size 

and polydispersity measured using HPSEC and gyration radii; « = 6 for any correlation 

involving, from fruit stored 5 weeks, starch percent crystallinity and RVA pasting properties, 

and any correlation involving, from fruit stored 10 weeks, DSC thermal properties, iodine 

affinities, apparent amylose content, absolute amylose content, isoamylase-debranched 

amylopectin chain-length measured using HPAEC, isoamylase-debranched amylopectin 

chain-length measured using HPSEC, amylopectin molecular size and polydispersity 

measured using HPSEC and gyration radii; n = 5 for any correlation involving, from fruit 

stored 5 weeks, gel firmness and gel stickiness; n = 4 for any correlation involving, from fruit 
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stored 10 weeks, gel firmness, gel stickiness and RVA pasting properties; n  -  3 for any 

correlation involving, from fruit stored 10 weeks, starch percent crystallinity. 

RESULTS AND DISCUSSION 

Correlation coefficients among selected starch structural, starch functional and fruit textural 

properties of squash are shown in Tables 1-12. Correlation coefficients are mentioned in the 

text when not included in Tables 1-12. Correlation Table 3 and 7 consist of only texture 

correlations that are separated to reduce the number of columns in Tables 4, 5, 8 and 9. 

Effects of Water/Dry Matter Percentage on Fruit Texture. Water and dry matter content 

of squash fruit at harvest, and both storage times, among the cultivars, were significantly 

correlated to the hardness, fracturability and springiness of raw and cooked squash fruit. For 

squash cultivar fruit at harvest, water content of raw fruit was significantly correlated to 

ha rdness  ( r  = -0 .90 ,  P < 0 .0001) ,  f r ac tu rab i l i t y  ( r  =  -0 .78 ,  P = 0 .003)  and  sp r ing ines s  ( r  =  

0.72, P = 0.008). Harvest fruit of the squash cultivars, steamed for 2 or 10 min, had water 

content also significantly correlated to hardness (r = -0.87 and 0.57, P = 0.0003 and 0.05, 

respectively) and springiness (r = 0.72, P — 0.009 for both). Water content of squash cultivar 

fruit steamed for 5 min were not significantly correlated to hardness or fracturability at 

harvest or both storage times. However springiness was strongly correlated to water/dry 

matter content after 5 min steaming for fruit at harvest only (r - 0.90, P < 0.0001). The lack 

of relationship for the squash cultivars between water/dry matter content and hardness after 5 

min steaming, but then a significant relationship after 10 min steaming, with a change from 

negative to positive, suggests that the 5 min steaming time could be a transition stage in 
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which dry matter components contributing to hardness are converted to products eliciting 

softer texture. 

Raw squash cultivar water content, from fruit after 5 and 10 weeks storage, was 

significantly correlated to hardness (r = -0.85 and -0.88, P - 0.005 and 0.0002 respectively) 

and fracturability (r = -0.74 and -0.72, P = 0.006 and 0.008 respectively), but not springiness. 

Fracturability of steamed squash fruit, from cultivars at both 5 or 10 weeks storage, was not 

significantly correlated to water content, but hardness was significantly correlated to water 

content, for both storage times, after steaming for 2 min (r = -0.78, P = 0.003 for both) and 

10 min (r = 0.67 and 0.62, P = 0.02 and 0.03 respectively). 

For squash cultivar fruit stored for 5 or 10 weeks, springiness was only significantly 

correlated to water content at the later cooking times of 10 min (r = 0.86, P = 0.0005 for 

both), 15 min (r = 0.70 and 0.79, P = 0.01 and 0.002 respectively) and 20 min (r = 0.57 and 

0.63, P = 0.05 and 0.03 respectively). Increasing springiness with decreasing dry matter 

percentage for the squash cultivars is surprising as in the later steaming times, starch would 

be expected to form a paste exhibiting viscoelastic rheological properties contributing to fruit 

springiness. An overall lack of dry matter in squash fruit, primarily due to lack of starch 

accumulation, may mean that a greater proportion of the dry matter is pectin, providing 

viscoelastic characteristics. 

Effects of Starch Content on Fruit Texture. Starch content, from fruit at harvest and 5 or 

10 weeks storage, was significantly correlated to hardness of raw fruit (Table 1, 4 and 8), 

and fruit steamed for 2 min (r = 0.76, 0.75 and 0.64; P = 0.004, 0.005 and 0.02 respectively) 

or 10 min (Table 1, 4 and 8). Qi et al. (22) reported starch in fruit to contribute to firmer 

texture of raw fruit but to softening during starch gelatinization, and Lee et al. (23) reported a 
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positive correlation between starch content and hardness of sorghum grain. Increased fruit 

hardness with increasing starch content was very obvious when processing fruit for starch 

extraction. Highly significant positive relationships between starch content and raw or 2 min 

steamed fruit indicates that ungelatinized starch granules contribute greatly to hardness of 

fruit. The strong lack of any relationship between starch content and hardness of squash fruit 

steamed for 5 min, for fruit at harvest or both storage times {r < 0.04 for all), suggests this is 

a transition cooking stage in which considerable amount of starch has gelatinized, and the 

significant negative correlation between starch content and fruit steamed for 10 min indicates 

most starch has gelatinized and the paste formed contributes to softer fruit than fruit with dry 

matter predominantly consisting of cell walls. Lack of contribution to texture once 

gelatinization is completed has been reported (10). 

Starch content of fruit, at harvest and after 5 or 10 weeks storage, was significantly 

correlated to fracturability of raw fruit (Table 1, 4 and 8) but not correlated when steamed. 

The increased force required to fracture raw squash fruit that has greater starch content is 

most likely because each cell to some extent is supported internally by starch granules 

within, and this theory has been previously postulated (24). If the fracture plane is through 

cell walls, then lack of involvement of starch in fracturability, even after 2 min cooking, 

could be due to decreased support from starch granules undergoing early phases of 

gelatinization. If the fracture plane included starch granules then the lack of involvement of 

starch in fracturability of steamed squash during cooking, could be because as squash fruit is 

heated, starch granules begin to absorb water, reducing glass transition temperature (25), and 

resulting in starch moving away from the brittle glassy region to the less brittle ductile region 

(26). Since squash fruit fractured at all steaming times, steamed fruit most likely fractured 
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because some cell walls separated due to pectin breakdown in the middle lamellae, as has 

been reported for potatoes (6). Distension of cell walls due to starch swelling has also been 

reported to contribute to fracturability of fruit and vegetable tissues (6) but other studies have 

observed starch swelling without cell wall breakdown (27). Burner et al. (10) has 

enlightened this debate by demonstrating that potatoes cooked at 100°C were softer and 

experienced swollen starch distending cell walls causing separation, whereas potatoes cooked 

at 70°C were firmer because there was no pectin demethylation and starch breakdown 

produced oligomers that could escape from the cells. In our studies we observe a mixture of 

cells with swollen starch distended that may or may not have caused cell separation (Chapter 

6). 

The effect of starch content on springiness of steamed squash was dependent on 

storage time. Starch content of squash fruit at harvest was significantly correlated to 

springiness for raw fruit and fruit steamed for 2, 5 or 10 min (r = -0.66, -0.67, -0.80 and -

0.84; P = 0.02, 0.02, 0.002 and 0.0005 respectively). However, fruit stored for 5 or 10 weeks 

resulted in significant correlations between starch content and springiness only for fruit 

steamed 10 or 15 min (Table 4 and 8). As mentioned previously, decreased starch content 

resulting in increased springiness implies that other dry matter components are more 

viscoelastic. Pectin is the most likely component since pectin is well known to be at higher 

concentrations in fruit and has been reported to be 10% of dry matter in pumpkins (28). Cell 

wall swelling and sliding in fruit tissues during ripening, due to pectin solubilization, 

increases viscoelastic properties of cell walls (29, 30), but fruits which ripen to a fracturable 

texture, which squash possess (Chapter 4), do not exhibit cell wall swelling (30). 

Additionally, an absence of any differences in total cell wall polysaccharide content for low-
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and high-starch winter squash after two months storage was reported (31). For lack of pectin 

solubilization, and absence of cell wall swelling, to explain greater springiness of low-starch 

squash cultivar fruit during cooking, starch could be interacting with pectin to reduce 

springiness. We have shown, using light microscopy, that winter squash in this study have 

pectic strands and starch interacting (32), which may restrict cell wall sliding. 

Starch Granule Size Distribution and Fruit Texture. For fruit at harvest, we did not 

observe any differences in starch granule shape or size distribution (Chapter 2) that we could 

attribute to textural differences in the squash fruit. Despite scanning electron microscopy 

images showing some squash starches had amylase-hydrolyzed and other damaged granules 

after 5 weeks storage, there was no clear trend between this and textural attributes. There 

was some suggestion that squash with a high proportion of starch hydrolyzed after 5 weeks 

storage may be less hard when raw and more firm after 10 min steaming compared to squash 

cultivars which had few hydrolyzed or damaged starch granules after 5 weeks storage 

(Chapter 2, Chapter 4). A lack of relationship between starch granule size and texture has 

been reported previously (15, 32). However, Gaines et al. (33) reported wheats with larger 

starch granules had softer texture, and in contrast, Seetharaman et al. (34) reported that larger 

corn starch granules resulted in firmer gels. In some resemblance to our findings for squash 

fruit with a greater proportion of hydrolyzed and damaged starch, increased hardness of 

baked wheat tandoori roti was observed with increasing percentage of damaged starch (35). 

Effect of Amylose on Fruit Texture. Hardness and fracturability of raw squash fruit, at 

harvest, was significantly correlated to iodine affinity of the amylopectin fraction (r = -0.59 

and -0.61; P = 0.05 and 0.04 respectively) and absolute amylose content (Table 1). Absolute 

amylose  was  a l so  co r r e l a t ed  t o  ha rdness  o f  f ru i t ,  a t  ha rves t ,  s t eamed  fo r  2  min  ( r  -  0.60 ,  P =  
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0.05). After 5 weeks of storage, hardness was not correlated to iodine affinity of amylopectin 

fraction or absolute amylose content. However, hardness of fruit stored 5 weeks, and 

steamed for 10 min, was correlated to apparent amylose content (Table 4). Fracturability 

was correlated to absolute amylose content for raw fruit after 5 weeks storage (Table 4), and 

appa ren t  amylose  con ten t  o f  f ru i t ,  s t o r ed  fo r  5  weeks  and  s t eamed  fo r  5  min  ( r  =  -0 .75 ,  P =  

0.03). After 10 weeks storage, apparent amylose content of squash fruit steamed for 5, 10, 

15 or 20 min was significantly correlated to hardness and fracturability (Table 8). For fruit 

stored 10 weeks, hardness after 5 min and fracturability after 2 min steaming, were 

s ign i f i can t ly  co r r e l a t ed  t o  iod ine  a f f in i t y  o f  amylopec t in  f r ac t ion  ( r  = -0 .87  and  -0 .82 ,  P =  

0.03 and 0.04 respectively), but not correlated to absolute amylose content. 

Harvest fruit springiness was largely unrelated to amylose content with the only 

correlations observed being springiness of fruit steamed 10 min and absolute amylose content 

(Table 1). No correlations between springiness and amylose content were observed for fruit 

stored 10 weeks, but many correlations were observed for fruit stored 5 weeks. For fruit 

stored 5 weeks, iodine affinity of the amylopectin fraction was significantly correlated to 

springiness of fruit steamed 0, 2, 5 and 20 min (r = 0.75, 0.74, 0.73 and 0.82; P = 0.03, 0.04, 

0.04, and 0.01 respectively). Absolute amylose of the same fruit was significantly correlated 

to springiness of fruit steamed at the two times that were not correlated for iodine affinity of 

amylopectin fraction, 10 and 15 min (Table 4). 

Overall, results suggest high levels of apparent amylose could result in lower 

hardness and fracturability, but high levels of absolute amylose could result in harder fruit, 

with more force required to fracture and less springiness. Since apparent amylose 

incorporates absolute amylose and long-chain amylopectins capable of complexing iodine to 
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squash fruit. Proportion of long amylopectin chains (DPn > 92), but not intermediate length, 

has been reported to critically control texture of cooked rice (15). Comparisons to other 

literature for absolute amylose content effects on texture are difficult since few researchers 

measure absolute amylose, and those that do are typically not focused on texture of foods. In 

contrast to our findings, apparent amylose content has been found to be positively correlated 

to hardness in rice (15,16,18, 37, 38, 39), rice-based fries (40), bananas and plantain (22), 

starch gels from cereals (33,41) and legumes (42). The only exception was Gaines et al. (41) 

who reported that apparent amylose content contributed to a softer kernel texture. 

Explanation of why most researchers findings for apparent amylose agree with our findings 

for absolute amylose could be that all their research was on cereals or legumes with A-type 

crystal patterns, which have shorter amylopectin branch chain-lengths than B-type starches 

(43), such as squash (Chapter 2). Therefore the overestimation in amylose content by the 

apparent amylose method is small for A-type starches, compared to the high iodine affinities 

for amylopectin fraction of B-type squash cultivar starches (Chapter 2). 

Effect of Amylopectin Molecular Size on Fruit Texture. Effect of amylopectin molecular 

size on squash fruit texture depended on fruit storage time, with few correlations observed 

for fruit at harvest or after 5 weeks storage, but many correlations observed for fruit stored 10 

weeks. For fruit at harvest, hardness of fruit steamed for 5 min was correlated to z-average 

amylopectin molecular weight (Mz) and gyration radius based on Mz (Rz) (r = 0.60 and 0.70; 

P = 0.05 and 0.02 respectively). Additionally, fracturability of fruit steamed for 5 min was 

correlated to number-average amylopectin molecular weight (Mn) and weight-average 

amylopectin molecular weight (Mw) (r = 0.73 and 0.79; P = 0.01 and 0.004 respectively). 
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There were no other correlations observed between textural and amylopectin molecular size 

parameters, for raw and steamed fruit at harvest. For fruit stored 5 weeks, only correlations 

observed were fracturability of fruit steamed for 2 min was correlated to gyration radius 

based on Mn (Rn) and gyration radius based on Mw (Rw) (r = -0.70 and -0.76; P = 0.05 and 

0.03 respectively), and hardness of fruit steamed for 20 min was correlated to Rw {r - -0.71, 

P = 0.05). 

We report previously that amylopectin molecular weight increased after 10 weeks 

storage, with decreased polydispersity (Chapter 2), and this increased size and uniformity 

may have a profound effect on texture of squash. Weight-average (polyMw) and z-average 

(polyMz) polydispersity of squash amylopectin stored for 10 weeks were highly correlated to 

hardness of fruit steamed for 10, 15 and 20 min (Table 8). PolyMw and polyMz of squash 

stored for 10 weeks were highly correlated to fracturability of fruit steamed for 5, 10, 15 and 

20 min (Table 8). Hardness of raw fruit, stored for 10 weeks was correlated to Mw, Mz and 

Rz (Table 8). Mz was also correlated to hardness of fruit steamed for 10 or 15 min, 

fracturability of fruit steamed for 5, 10 or 15 min, and springiness of fruit steamed for 10, 15 

or 20 min (Table 8). Springiness of fruit, stored 10 weeks and steamed for 10 min was also 

correlated to Mw (Table 8). 

Increase in average amylopectin molecular size during storage influencing textural 

attributes has not been reported previously in literature. To our knowledge there have been 

no previous reports of amylopectin molecular size increasing with storage, and authors who 

studied amylopectin size and its effects on texture, debranched their molecular weight 

fractionated amylopectin and reported the effects of debranched fractions of low and high 
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amylopectin molecular weight on texture (16, 44), thereby making comparison with our 

results difficult. 

Effect of Amylopectin Branch Chain-Length on Fruit Texture. Isoamylase-debranched 

amylopectin separated by HPAEC-ENZ-PAD revealed many correlations with squash fruit 

texture. Surprisingly, the second degree of polymerization peak (DPII), a parameter that 

usually receives little attention, had the most correlations with fruit texture, but all 

correlations were observed for stored fruit. For squash fruit at harvest, proportion of 

amylopectin branch chain-lengths of DP 3-6 was correlated to hardness of fruit steamed for 

10  ( r  = 0 .69 ,  P = 0 .02 )  o r  15  min  ( r  =  0 .64 ,  P =  0 .03 ) ,  f r ac tu rab i l i t y  o f  f ru i t  s t eamed  15  ( r  =  

0.79, P = 0.003) or 20 min (r = 0.77, P = 0.004) and springiness of fruit steamed for 20 min 

(r = -0.64, P = 0.03). The slightly longer, but still very short amylopectin branch chain-

lengths of DP 6-9, had their proportion from fruit at harvest, correlated to similar textural 

a t t r i bu t e s  a s  DP  3 -6 ,  w i th  co r r e l a t i ons  fo r  ha rdness  o f  f ru i t  s t eamed  10  min  ( r  =  0 .66 ,  P =  

0.03), fracturability of fruit steamed 15 (r = 0.61, P = 0.04) or 20 min (r = 0.60, P = 0.05) 

and springiness of fruit steamed for 20 min (r = -0.60, P = 0.05). For fruit at harvest, 

proportion of amylopectin branch chain-lengths of DP 6-12 and DP > 37 had just one 

correlation with springiness of fruit steamed 20 min (r = -0.66 and 0.59, P = 0.03 and 0.05 

respectively) and no correlations were observed between textural attributes and proportion of 

amylopectin branch chain-lengths of DP 25-36. Proportion of amylopectin branch chain-

l e n g t h s  o f  D P  1 3 - 2 4  w a s  s i m i l a r  t o  D P  3 - 6  w i t h  h a r d n e s s  c o r r e l a t e d  t o  f r u i t  s t e a m e d  1 0  ( r  =  -

0.61, P = 0.04) or 15 min (r = -0.64, P = 0.03) and fracturability of fruit steamed 15 or 20 

min (r = -0.59, P = 0.05 for both). Average amylopectin branch chain-length was not 

correlated to any textural attribute of fruit at harvest, largely due to our results indicating that 
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very short amylopectin branch chains (DP < 9) and intermediate chain-lengths (DP 13-24) 

are the major contributors to texture. 

Squash fruit stored for 5 weeks had many correlations between DPII and textural 

attributes including hardness and fracturability of fruit steamed for 5 or 10 min (Table 4), 

and springiness of fruit steamed for 2 min (r = -0.74, P = 0.04). Very short amylopectin 

branch chain-lengths (DP 3-6), from fruit stored 5 weeks, were not correlated to squash 

texture. Proportion of short amylopectin branch chain-lengths (DP 6-9) was correlated to 

hardness and fracturability of fruit steamed 5 min, and fracturability of fruit steamed 10 min 

(Table 4). Intermediate amylopectin branch chain-lengths (DP 13-24) proportion from fruit 

stored 5 weeks was correlated to hardness and fracturability of raw fruit (Table 4), hardness 

of fruit steamed 2 min (r = -0.67, P = 0.05), and springiness of fruit steamed 5 or 10 min 

(Table 4). Proportion of longer amylopectin branch chain-lengths (DP 25-36) from fruit 

stored 5 weeks was correlated to springiness of fruit steamed 10 or 15 min (Table 4) and no 

correlations were observed with long amylopectin branch chain-lengths (DP > 37). Average 

amylopectin branch chain-length, from fruit stored 5 weeks, was correlated to hardness and 

f rac tu rab i l i t y  o f  r aw  f ru i t  (Tab le  4 )  and  ha rdness  o f  f ru i t  s t eamed  fo r  2  min  ( r  =  0 .67 ,  P =  

0.05). 

DPII from fruit stored 10 weeks was only correlated to springiness of raw fruit (r = -

0.85, P = 0.03). No correlations were observed between textural attributes and proportion of 

short amylopectin branch chain-lengths (DP < 12). Proportion of intermediate amylopectin 

branch chain-lengths (DP 13-24), from fruit stored 10 weeks, was correlated to hardness of 

raw fruit and fruit steamed for 2 min (r = -0.79, P = 0.05 for both). Long amylopectin branch 

chain-lengths (DP 25-36) proportion was correlated to hardness and fracturability of raw fruit 
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(Table 8) and fruit steamed for 2 min ( r  = -0.90 and -0.79, P — 0.01 and 0.05 respectively), 

and springiness of fruit steamed 20 min (Table 8). Proportion of very long amylopectin 

branch chain-lengths (DP > 37) from fruit stored 10 weeks, was correlated to hardness and 

f r ac tu rab i l i t y  o f  r aw  f ru i t  (Tab le  8 )  and  ha rdness  o f  f ru i t  s t eamed  fo r  2  min  ( r  =  0 .86 ,  P =  

0.03). Average amylopectin branch chain-length, from fruit stored 10 weeks, was correlated 

to hardness of raw fruit (Table 8) and fruit steamed for 2 min (r = 0.81, P = 0.04). Our 

results indicate that intermediate amylopectin branch chain-lengths (DP 13-36) are the only 

chain-lengths that influence textural attributes at both harvest and after storage. Influence of 

short amylopectin branch chain-lengths on textural attributes of squash fruit seemed to 

diminish as storage progressed. Hardness and fracturability of squash fruit was always 

correlated positively with short (DP < 12) and very long (DP >37) amylopectin branch 

chain-lengths and negatively correlated to intermediate amylopectin branch chain-lengths 

(DP 13-36), regardless of storage time. 

Isoamylase-debranched amylopectin separated on size-exclusion chromatography 

yielded long-chain amylopectin fraction (DP > 26) and short-chain amylopectin fraction (DP 

< 26), which were correlated to textural attributes of squash fruit, largely dependent on 

storage time. Hardness of fruit, at harvest, steamed for 10 min was positively correlated to 

percentage of long-chain amylopectin (r = 0.60, P = 0.05) and negatively correlated to 

percentage of short-chain amylopectin. Practicability of fruit, at harvest, steamed for 15 or 

20 min was correlated to percentage of long-chain amylopectin (r = 0.61 and 0.66; P = 0.05 

and 0.03 respectively). Springiness of harvest fruit, steamed for 10 or 15 min was correlated 

to long-chain amylopectin fraction (r = 0.76 and 0.72; P - 0.007 and 0.01). These findings 

contradict those found using HPAEC-ENZ-PAD, which found no correlations between 
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textural attributes and very long chain-lengths (DP > 25), and correlations between short 

amylopectin chains and hardness or fracturability were negative. HPAEC-ENZ-PAD is 

limited to measuring amylopectin branch chain maximum length of about 70-80 DP, whereas 

the long amylopectin fraction from HPSEC method is incorporating amylopectins of longer 

chain-lengths which may explain the differences we observe, and suggest that it is the 

extremely long chain-lengths that contribute to hardness of squash fruit. 

For fruit stored for 5 weeks, the only correlation observed between long-chain 

amylopectin fraction measured by HPSEC and texture was springiness after 5 min steaming 

(r = 0.80, P = 0.02). More correlations were observed for fruit stored 10 weeks. Long-chain 

amylopectin fraction, from fruit stored 10 weeks, was correlated to hardness of fruit after 

steaming for 10,15 or 20 min and correlated to fracturability of fruit after steaming for 5, 10 

or 15 min (Table 8). For fruit stored 10 weeks, HPSEC and HPAEC-ENZ-PAD both found 

long amylopectin branch chains to have positive correlation with hardness and fracturability, 

but the cooking times that significant correlations are observed differs. 

The mechanism of how long-chain amylopectin contributes to hardness remains 

somewhat unknown. Squash starch amylopectins have very high iodine affinities, which is 

known to be directly proportional to long B-chains and inversely to short B-chains (45, 46), 

and these long B-chains have been shown to have uninterrupted external unbranched portions 

(13). Rheological and microscopic studies by Sandhya Rani and Bhattacharya (20,46,47, 

48) on the viscoelastic properties of rice pastes have shown amylopectin with long B-chains 

have rigid, elastic and strong starch granules which resist swelling and disintegration when 

heated in water under shear. Conversely, rice starches with short B-chains have weak, 

deformable and fragile starch granules that tend to break down under same conditions. 
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Ramesh et al. (16) proposes that long amylopectin chains have greater propensity to 

participate in intermolecular interactions, thereby affecting rigidity of starch granules and 

indirectly affecting texture. Interactions of long amylopectin chains have also been 

suggested to form complexes that are retained during cooking rather than leached, allowing 

hardness to be maintained (49). In agreement with our findings, many researchers have 

reported long-chain amylopectins contribute to a firmer texture of rice (14, 15, 16, 49, 50, 51, 

52, 53, 54, 55), rice bread (56), com starch gels (57) and sweet potatoes (58). Only report to 

contrast these findings was by Wang and Wang (59) who reported hardness of rice was 

correlated to the short A and B1 amylopectin chains. 

Effect of Starch Thermal Properties on Fruit Texture. The relationship between thermal 

properties of squash starches and squash fruit textural attributes depended on fruit storage 

time. Very few correlations were observed between starch thermal properties and finit 

texture, for fruit at harvest. Springiness was not correlated to starch thermal properties from 

fruit at harvest. Hardness of fruit, at harvest, steamed for 15 min was correlated to percent 

rétrogradation (%re) (r = -0.61, P = 0.05), and fruit steamed for 20 min was correlated to %re 

and range of gelatinization of retrograded starch (ROGR) (r = -0.77 and -0.65; P = 0.005 and 

0.03 respectively). Fracturability of raw fruit, at harvest, was correlated to conclusion 

temperature of retrograded starch (TCR), ROGR and %re (r = -0.63, -0.61 and -0.61; P = 0.04, 

0.05 and 0.05 respectively). Fracturability of fruit steamed 2 min was also correlated to TCR 

and change in enthalpy of gelatinization (AH) (r = -0.60 and 0.63; P = 0.05 and 0.04 

respectively). 

After 5 weeks storage, an increase in correlations between starch thermal properties 

and texture were observed. ROG and %re were correlated to hardness of raw (Table 5) and 



www.manaraa.com

281 

fruit steamed 2 min (r = -0.87 and -0.75; P = 0.005 and 0.03 respectively), with the latter 

thermal property also correlated to hardness after 20 min steaming (Table 5). Hardness of 

fruit steamed for 10 min was also correlated to AH (Table 5) and AH of retrograded starch 

(AHR) (r = -0.79, P = 0.02), with the latter thermal property also correlated to steamed fruit 

after 15 min (r = -0.74, P = 0.04). Fracturability of raw fruit, stored 5 weeks, was correlated 

to ROG and %re (Table 5), with the latter thermal property also correlated to fracturability of 

fruit steamed for 2 min (r = -0.83, P = 0.01). Springiness was only correlated with TcR after 

fruit was steamed for 2 (r = 0.69, P = 0.05) or 5 min (r = 0.78, P = 0.02). 

Squash fruit stored for 10 weeks had an increase in number of correlations between 

starch thermal properties and texture, with most correlations involving the five thermal 

properties of onset gelatinization temperature (T0), peak gelatinization temperature (Tp), 

conclusion gelatinization temperature (Tc), AH and AHR. Hardness of squash fruit, stored 10 

weeks and steamed for 10, 15 or 20 min, was correlated to T0, Tp, Tc, AH and AHR (Table 9). 

Both AHR and TcR were correlated to fruit hardness after 5 min steaming (r = -0.93 and -0.83; 

P = 0.007 and 0.04 respectively). Fracturability of fruit, stored 10 weeks, and steamed for 

10, 15 or 20 min was correlated to T0 (r = 0.88, Tp and AH (Table 9). Fracturability was 

correlated to Tc at 10 and 15 min steaming (Table 9). Significant correlations were also 

observed between fracturability of fruit steamed 5 min and T0, AH and AHR (Table 9). 

Spr ing ines s  was  on ly  co r r e l a t ed  t o  AH and  T c R  a f t e r  2  min  s t eaming  ( r  =  0 .88  and  0 .91 ;  P =  

0 .02  and  0 .01  r e spec t ive ly ) ,  and  the  fo rmer  t he rma l  p rope r ty  a f t e r  15  min  s t eaming  ( r  =  -

0.81, P = 0.05). 

Previous reports of starch thermal properties correlating with texture exist, but most 

found just one parameter that was related. The most common trend observed is increasing 
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onset gelatinization temperature (T0) correlates to increasing hardness of rice (60), bread 

(61), com starch gels (34), potatoes (62) and sweet potatoes (63). These reports are in 

agreement with squash cultivar fruit, stored for 10 weeks, and steamed 10 to 20 min, which 

had increased hardness and fracturability with higher T0, Tp and Tc. However Tan et al. (64) 

reported a decrease in hardness with increasing T0 for rice, and Ong and Blanshard (65) 

found gelatinization temperature was not correlated to texture of cooked rice. Percent 

rétrogradation was also reported to be positively correlated to firmness of cooked rice (66, 

67). Higher AH of the amylose-lipid complex has been reported to increase springiness (68), 

but no valid comparison can be made with our study since squash starches did not exhibit an 

amylose-lipid complex. In our study, AH and AHR were both negatively correlated to 

hardness and fracturability of steamed squash fruit. This is difficult to explain since if 

hardness of cooked fruit was due to amylopectin with long B-chains (14), then AH would 

also be high (43). 

Effect of Starch Pasting Properties on Fruit Texture. Depending on storage time, starch 

pasting properties were correlated to texture of squash, but unlike for starch thermal 

properties, most correlations involving pasting properties were for fruit stored 5 weeks. No 

correlations between harvest squash fruit starch pasting properties and textural parameters 

were observed. For fruit stored 10 weeks, hardness of fruit steamed for 10 min was 

co r re l a t ed  t o  t rough  ( r  =  -0 .97 ,  P =  0 .03 ) ,  b r eakdown  (Tab le  9 )  and  peak  t ime  { r  = -0 .99 ,  P =  

0.01). Fracturability of fruit stored for 10 weeks was correlated to setback after 5 min 

steaming (r = -0.97, P = 0.03), trough after 10 min steaming (r = -0.95, P = 0.05), and peak 

viscosity after 20 min steaming (Table 9). Springiness was not correlated to starch pasting 

properties for fruit stored 10 weeks. 
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Squash fruit stored for 5 weeks had greatest number of correlations between starch 

pasting properties and texture. For fruit stored 5 weeks, hardness after 5 or 10 min steaming 

was correlated to final viscosity and setback (Table 5), with the latter pasting property also 

correlated to hardness after 15 min steaming (r — 0.90, P = 0.02). Fracturability of fruit 

stored 5 weeks and steamed for 10,15 or 20 min was correlated to peak viscosity, final 

viscosity and setback (Table 5), with the latter two pasting properties also correlated after 5 

min steaming (r = -0.92 and -0.98; P = 0.01 and 0.0006 respectively). Springiness was 

correlated to breakdown for raw and fruit steamed for 10,15 or 20 min (Table 5). 

Springiness was also correlated to peak viscosity after 10 min steaming and pasting 

temperature after 20 min steaming (Table 5). 

From our results, the main trends observed is at various cooking times for peak 

viscosity, final viscosity and setback to have a negative relationship with squash fruit 

fracturability, for final viscosity and setback to have a negative relationship with fruit 

hardness, and for breakdown to have a negative relationship with fruit springiness. A 

negative relationship between peak viscosity or breakdown and hardness has been previously 

reported in cooked rice (69, 70), wheat noodles (71), cereal gels (33, 72, 73) and beans (74). 

However final viscosity has also been reported to be positively correlated to hardness (70), 

and Lee et al. (23) reported no relationship between sorghum grain hardness and starch 

pasting properties. Limpisut and Jindal (70) also reported that hardness was positively 

correlated to setback, and springiness was negatively correlated to peak viscosity, and 

positively correlated to setback, final viscosity and pasting temperature, with our findings 

only in agreement with the latter pasting property. However, springiness correlated 

positively to peak viscosity has been reported for sorghum noodles (75). 



www.manaraa.com

284 

Squash starches long amylopectin B-chains (Chapter 2), may be primarily positioned 

externally (14), which is conducive to forming intermolecular interactions, which help hold 

granules together when heated, thereby aiding swelling and resulting in high peak viscosity 

(Chapter 3). The intermolecular interactions have been speculated to be retained within cells 

during cooking (15), creating strong, rigid starch granules (14) that would be expected to 

maintain hardness and reduce starch granule breakdown. One explanation for decreased 

hardness with increased peak viscosity is that starch with high peak viscosity may have 

swelled sufficiently to distend cell walls, causing breakdown of cell wall matrix and a softer 

texture. We have observed swollen gelatinized starch engorged the majority of cell volume 

in high-starch squash cultivars (Chapter 6). 

Effect of Starch Gel Properties on Fruit Texture. Very few correlations were observed 

between squash starch gel properties and fruit texture, regardless of storage time. Hardness 

of fruit, at harvest and steamed 5 min, was correlated to gel firmness after gel was stored for 

1 d (r = 0.68, P - 0.02), and raw fruit fracturability was correlated to stickiness of gels stored 

for 1 d (r = -0.60, P - 0.05). For fruit stored 5 weeks, hardness of raw fruit was correlated to 

gel stickiness after 1 d (r = -0.84, P = 0.04), and hardness and fracturability of fruit steamed 

5 min was correlated to firmness of gels stored 1 d (r = -0.86 and -0.90; P = 0.03 and 0.02 

respectively). Hardness of fruit stored 10 weeks and steamed for 5 min was correlated to 

firmness of gels stored 1 d (r = -0.96, P = 0.04). Fracturability of fruit stored 10 weeks and 

steamed for 15 min was correlated to firmness of gels stored 7 d, and springiness of fruit 

stored 10 weeks and steamed 2 min was correlated to stickiness of gels stored 7 d (r = -0.97, 

P = 0.03 for both). Numerous studies have investigated the rheological properties of starch 

gels but few studies have attempted to correlate this with textural properties of the plant 
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tissue the starch was extracted from, thereby making comparison with our results difficult. 

Our results disagreed, for fruit at harvest, and agreed, for fruit after 5 or 10 weeks storage, 

with Gaines et al. (33) who reported harder starch gels were derived from cereals with softer 

kernels. 

Effect of Starch Crystallinity on Texture and Starch Structural and Functional 

Properties. Correlations were observed among starch crystallinity percent and texture or 

starch functional properties for fruit at harvest and 5 weeks storage, but no correlations were 

observed after 10 weeks storage. For fruit at harvest, starch percent crystallinity was 

correlated to Tc (r = 0.64, P = 0.03), Mz (r = 0.63, P = 0.04), Rz (r = 0.60, P = 0.05) and the 

only textural attribute was hardness after 5 min steaming (r = 0.62, P = 0.04). Starch percent 

c rys t a l l i n i t y  a f t e r  5  weeks  s to rage  was  co r r e l a t ed  t o  appa ren t  amylose  con ten t  ( r  =  0 .89 ,  P =  

0.02), the thermal property, AH (r = 0.84, P = 0.04), and the pasting properties, peak 

v i scos i ty  ( r  -  0 .98 ,  P =  0 .0007) ,  t r ough  ( r  =  0 .83 ,  P = 0 .04 )  and  f ina l  v i s cos i ty  ( r  =  0 .84 ,  P =  

0.04). Starch percent crystallinity, from fruit stored 5 weeks, was also correlated to the 

textural attributes of hardness, springiness and fracturability of fruit steamed 10 min (r = -

0.81, -0.88 and -0.82; P = 0.05, 0.02 and 0.05 respectively) and the latter textural attribute 

was also correlated after 15 or 20 min steaming (r = -0.83, P = 0.05 for both). 

In general, our results suggest increased crystallinity results in higher gelatinization 

temperatures, higher AH, higher paste viscosity and reflects higher apparent amylose content. 

Crystallinity has been reported to be correlated positively with gelatinization temperatures 

(65, 76, 77), peak viscosity (78), and AH (76, 79). In contrast to our findings, other studies 

have reported apparent amylose content to be negatively correlated to crystallinity (80, 81, 

82). 
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Decreases we observed in hardness and fracturability of squash fruit, stored 5 weeks, 

after 10 min steaming, most likely reflect the transformation from hard crystalline starch 

granules to non-crystalline swollen gelatinized starch. Decreased springiness with increasing 

crystallinity, for fruit steamed 10 min, could reflect melted crystallites distending as one 

large gelatinized starch mass, rupturing cell walls and reducing cell sliding and swelling, 

thereby reducing viscoelastic properties of the cell wall matrix (29, 30). Comparisons with 

our findings are difficult as few studies have focused on effects of crystallinity on texture. 

Most studies have focused on bread staling in which starch crystallinity has been reported to 

be correlated to bread firmness (83, 84), but other studies indicate stronger factors have been 

reported to contribute to bread firmness than starch crystallinity (85, 86, 87). However, 

studies of bread firmness are difficult to compare with squash fruit hardness since the former 

is caused by starch rétrogradation. Three studies are in contrast to our findings by reporting 

cooked cereal grains have increased firmness with increasing starch crystallinity (88, 89, 90). 

Correlations Between Squash Starch Amylose Content and Thermal Properties. Iodine 

affinity of amylopectin fraction of squash starch, from fruit at harvest, was correlated to TPR, 

TCR, AHR, ROGR and %re (r = 0.60, 0.72, 0.60, 0.79, and 0.70; P = 0.05, 0.01, 0.05, 0.004 

and 0.02 respectively). Absolute amylose content, from fruit at harvest, was correlated to 

ROG (Table 2). Apparent amylose content of fruit, from 5 and 10 weeks storage, was 

correlated to AH and AHR (Table 10). Iodine affinity of amylopectin fraction from starches 

of fruit stored 10 weeks was correlated to TPR and TCR (r = 0.91 and 0.82; P = 0.01 and 0.05 

respectively), and absolute amylose content was correlated to T0R (r = -0.88, P = 0.02). 

Our results show some trend for higher T0 with increasing absolute amylose content 

and higher AH with increasing apparent amylose content. Several researchers have 



www.manaraa.com

287 

previously reported higher apparent amylose content to be correlated to lower T0 (91, 92, 93). 

However, other researchers have reported a positive relationship between T0 and apparent 

amylose content (94, 95) and many report no relationship between apparent amylose content 

and all gelatinization temperatures and enthalpy changes (96, 97, 98, 99, 100, 101, 102). 

Since we also observed some correlations between iodine affinity of amylopectin fraction 

and starch thermal properties, long-chain amylopectins may play a critical role in thermal 

properties of starches and explain the discrepancies found in literature for the influence of 

amylose content on starch thermal properties. A negative correlation has been reported 

between AH and apparent amylose content (42,103,104,105), and this disagreement with 

our findings may be because long-chain squash amylopectins could be providing a significant 

contribution to AH. 

Correlations Between Squash Starch Amylose Content and Pasting Properties. No 

correlations between amylose content and pasting properties were observed for starch 

extracted from fruit at harvest, but correlations were observed after 5 and 10 weeks storage. 

Apparent amylose content was correlated to trough (r = 0.89, P = 0.02), peak viscosity, final 

viscosity and setback (Table 6) for starch from fruit after 5 weeks storage. For fruit stored 

10 weeks, only breakdown and final viscosity were correlated to apparent amylose content 

(Table 6), but trough (r = 0.97, P = 0.03), breakdown (Table 6), final viscosity (Table 6) 

and peak time (r = 0.98, P = 0.02) were all correlated to absolute amylose content. 

Overall our results indicate a positive relationship between amylose content and peak 

or final viscosity, and a negative relationship between amylose content and breakdown. This 

is in disagreement with many studies that reported a negative relationship between apparent 

amylose content and peak or final viscosity (43, 53, 106, 107, 108, 109, 110, 111 112, 113, 
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114, 115, 116, 117, 118). However, several other studies are in agreement with our findings 

of a positive relationship between apparent amylose content and peak or final viscosity (95, 

105, 119, 120, 121, 122, 123, 124), and one study reported no relationship between amylose 

and pasting properties (129). Relationship between amylose content and breakdown is also 

conflicting with some studies reporting a positive relationship (20,106,122,124) and other 

studies reporting, as we found, a negative relationship (53, 107,109, 111, 112, 126,127). 

Correlations Between Squash Starch Amylopectin Molecular Size and Thermal 

Properties. No correlations were observed between squash starch amylopectin molecular 

size and thermal properties, for fruit at harvest, but correlations were observed at 5 and 10 

weeks storage. T0 was correlated to Mn, Mw and Mz of starch from fruit after 5 weeks storage 

(r = -0.79, -0.76 and -0.76; P = 0.02, 0.03 and 0.03 respectively), and correlated to polyMz 

after 10 weeks storage (r = 0.82, P = 0.05). AH, after fruit were stored for 10 weeks, was 

correlated to polyMz, polyMw and Mz (r = -0.91, -0.88 and -0.81; P = 0.01, 0.02 and 0.05 

respectively). Tp, of starch from fruit after 5 weeks storage, was correlated to Mn (r = -0.74, 

P = 0.04). 

Our results suggest that higher molecular weight amylopectin with higher degree of 

uniformity have lower T0. It would be expected that this phenomenon is largely due to the 

increased uniformity since larger molecules, with no change in polydispersity, would be 

expected to melt at higher temperatures. However, our results also suggest that starch with 

lower polydispersity require greater energy to melt crystals, indicating that increased 

uniformity is not the cause of lower T0 when amylopectin molecular size increases during 

storage of fruit. Although reports of correlations between amylopectin chain-length and 

thermal properties are common, few authors have commented on amylopectin molecular size 
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and thermal properties, with the only study we found reporting AH was independent of 

amylopectin molecular weight, in which they also reported that polydispersity was similar 

(44). 

Correlations Between Squash Starch Amylopectin Molecular Size and Pasting 

Properties. Unlike correlations for starch thermal properties, some parameters of 

amylopectin molecular size were correlated to pasting properties of starch from fruit at 

harvest, and after 10 weeks storage, but not after 5 weeks storage. Trough, final viscosity 

and setback of starch from fruit at harvest were correlated to polyMw (r = -0.69, -0.73, and -

0.70; P = 0.02, 0.01, and 0.02 respectively) and gyration radii based on Mn (Rn) (r = 0.66, 

0.70 and 0.68; P = 0.03, 0.02, and 0.02 respectively). For fruit stored 10 weeks, trough and 

peak time were correlated to Mn (r - -0.99 and -0.98; P = 0.009 and 0.02 respectively), 

pasting temperature was correlated to Rn (r = -0.99, P - 0.01) and final viscosity was 

correlated to gyration radius based on Mw (Rw) (r = -0.97, P = 0.03). 

There was no consistent trend between amylopectin molecular size and pasting 

properties, for starch from fruit at various storage times. For example, final viscosity was 

positively correlated to gyration radius for starch from fruit at harvest, but negatively 

correlated for starch from fruit stored 10 weeks. Higher peak viscosity with higher 

amylopectin molecular weight has been reported (57,128,129,130), but one study reported 

viscosity of starch pastes was correlated to amylopectin branch chain-length but not 

molecular size (131). 

Correlations Between Squash Starch Amylopectin Branch Chain-Length Distribution 

and Thermal Properties. Squash isoamylase-debranched amylopectin branch chain-length 

distribution, measured by HPAEC-ENZ-PAD was correlated to starch thermal properties. 
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DPII, for amylopectin from fruit at harvest, was correlated to T0 ( r  = 0.62, P =  0.04), TP (r = 

0.84, P = 0.0006), TC (r = 0.80, P = 0.001) and TOR (r = 0.74, P = 0.009). Only correlation 

observed with amylopectin chain-length categories, for fruit at harvest, was proportion of 

amylopectin branch chain-lengths of DP 25-36 was correlated to T0R (r - 0.62, P = 0.04). No 

correlations were observed, for fruit stored 5 weeks, between starch thermal properties and 

amylopectin branch chain-length distribution. Similar findings were observed for fruit stored 

10 weeks except DPII was correlated to AH (r = 0.76, P = 0.05) and TOR (r = -0.84, P = 0.03). 

Overall, measurements of amylopectin branch chain-lengths by HPAEC-ENZ-PAD do not 

correlate well with starch thermal properties. 

Squash isoamylase-debranched amylopectin chain-length distribution, measured by 

HPSEC, for starch from fruit at harvest, was not correlated to starch thermal properties, but 

correlations were observed for starch from fruit after storage. TcR of starch from fruit stored 

5 weeks was correlated to long (r = 0.83, P = 0.01) and short (r = -0.83) amylopectin branch-

cha ins .  Fo r  f ru i t  s t o r ed  10  weeks ,  l ong -cha in  amylopec t in  was  co r r e l a t ed  t o  T p  ( r  =  0 .86 ,  P =  

0.03), Tc (r = 0.91, P = 0.01), AH (r = -0.92, P = 0.009) and AHR (r = -0.82, P - 0.04). 

Positive relationship between long-chain amylopectins and gelatinization temperatures that 

we found for squash disagrees with the findings by Li et al. (132) for barley. Negative 

relationship found between AH and long amylopectin branch chain-lengths disagrees with 

findings from com starch (44). 

Correlations Between Squash Starch Amylopectin Branch Chain-Length Distribution 

and Pasting or Gel Properties. Amylopectin branch chain-length distribution, measured by 

HPAEC-ENZ-PAD, was correlated to pasting properties of squash starches. Short 

amylopectin branch chain-lengths (DP < 12) were not correlated with pasting properties, for 
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starch from fruit at harvest. Intermediate amylopectin branch chain-lengths (DP 13-24) 

propor t i on  was  co r r e l a t ed  t o  peak  v i scos i ty  and  pas t ing  t empera tu re  ( r  =  -0 .59  and  0 .59 ;  P =  

0.05 and 0.05 respectively). Long amylopectin branch chain-lengths (DP 25-36) were not 

correlated to pasting properties, but very long amylopectin branch chain-lengths (DP > 37) 

proportion was correlated to peak viscosity (Table 2). Average amylopectin branch chain-

length, from fruit at harvest, was correlated to peak viscosity and pasting temperature (Table 

2). For fruit stored 5 weeks, only short amylopectin branch chain-length proportion (DP 6-9) 

was correlated to any pasting property, that of setback (r = -0.83, P - 0.008). However DPII 

was correlated to final viscosity {r = -0.81, P - 0.01), setback (r = -0.80, P = 0.02) and peak 

time (r = -0.76, P = 0.05). No correlations were observed between amylopectin branch 

chain-length distribution and pasting properties of starch from fruit stored 10 weeks. 

Stickiness of gels, stored 1 or 7 d, from starch extracted from fruit at harvest, was 

correlated to DPII (r = -0.62, P = 0.04 for both). Stickiness of gels, stored 7 d, from fruit 

stored 5 weeks, was correlated to proportion of DP 12-24 amylopectin branch chain-lengths 

(r = 0.81, P = 0.01) and average amylopectin branch chain-length (Table 6). Short 

amylopectin branch chain-lengths, DP 6-9 and DP 6-12 were both highly correlated to gel 

stickiness after 1 and 7 d storage, respectively (r = -0.98 and 0.98, P - 0.001 and 0.001 

respectively). Gel stickiness was also correlated to long amylopectin branch chain-lengths 

(DP 25-36) after 1 or 7 d, for fruit stored 10 weeks (r = 0.93 and -0.90, P = 0.007 and 0.01 

respectively). Average amylopectin branch chain-length, from fruit stored 10 weeks, was 

correlated to gel stickiness after 1 d storage (r = 0.98, P - 0.001). Greater stickiness with 

higher proportion of amylopectin in starch has previously been reported (32, 133, 134) but 
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the fine structure of amylopectin was not investigated. No correlations were observed 

between amylopectin branch chain-length distribution and gel firmness. 

The positive correlation for very long amylopectin branch chain-lengths proportion 

(DP > 37) and peak viscosity, for fruit at harvest, is in agreement with reports for rice (132, 

135) and wheat (130,136) starches. Studies have reported a negative relationship between 

long amylopectin chains and breakdown (55, 132, 135) in which it is proposed that long 

amylopectin chains may restrain the collapse of starch granules by cross linking amylopectin 

molecules (55). However, in our study we did not observe any correlations between 

amylopectin branch chain-lengths and breakdown. 

Conclusion. The presence of starch in squash fruit contributes to greater hardness and 

fracturability when raw, but lower hardness and fracturability at later cooking stages, 

presumably due to transition of hard semi-crystalline starch granules to gelatinized starch 

paste. Higher springiness observed for squash with low starch content suggests starch is 

restricting cell wall sliding that provides viscoelastic properties. Correlations observed 

between hardness or fracturability and apparent amylose were negative, whereas for absolute 

amylose correlations they were positive, suggesting that amylopectin branch chain-lengths 

influence texture. Further evidence was provided by establishing correlations between 

hardness or fracturability and short (DP < 12) and long (DP >37) amylopectin branch chains. 

Both starch pasting and thermal properties had strong correlations to squash fruit texture. 

Amylose content tended to influence squash starch pasting properties, whereas fine structure 

of amylopectin influenced starch thermal properties. 
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Table 1 

Correlation coefficients (r x 100) for selected squash textural and starch structural properties from fruit at harvest. 

Hrw Hio Fra Srw Sio S20 AbA Mw CL Dg-12 
Hrw 100 

Hio -27 100 

Frw 95'" -4 100 
Srw -68" 25 -58' 100 

Sio -50 56' -47 56* 100 

S 20 -28 -18 -40 33 39 100 
AbA 60' -16 66' -36 -72" -22 100 
Mw -7 12 1 59* 22 -14 -25 100 
CL 46 17 52 -27 9 41 26 -20 100 
De-12 -45 43 -30 32 -1 -66' -9 14 -71" 100 

D>37 45 8 47 -24 17 59* 14 -20 94'" -79" 
St 77" -64* 66' -66* -84"' -9 66' -25 18 -38 

D; >37 

100 
20 

Abbreviations: Hrw = hardness raw, Hio = hardness 10 min steaming, Frw = fracturability raw, Srw = springiness raw, 
Sio = springiness 10 min steaming, S%o = springiness 20 min steaming, AbA = absolute amylose, Mw = weight-average 
amylopectin molecular weight, CL = average amylopectin chain-length, De-n = proportion of amylopectin branch 
chain-lengths DP6-12, IX37 = proportion of amylopectin branch chain-lengths DP >37 and St = starch content. 
* = 0.05, ** = 0.01 and *** = 0.001 level of significance. 
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Table 2 

Correlation coefficients (r x 100) for selected squash starch structural and functional properties from fruit 
at harvest. 

AbA PD CL D>37 RG PV BK FV SB PT GF 
AbA 100 
PD -17 100 
CL 26 1 100 
D>37 14 -13 94'" 100 
RG -64* 17 -50 -46 100 
PV 36 -46 70** 65* -26 100 
BK 12 36 56 43 -43 30 100 
FV 27 -73" 36 35 -3 80'" -30 100 
SB 26 -70** 44 38 -15 81"' -9 95"' 100 
PT -26 -19 -63* -49 69* 29 -87'" 18 -5 100 
GF 21 -59' -8 2 1 2 -60* 47 42 38 100 
GS -50 8 -30 -9 47 -36 -52 -11 -28 59* 24 

Abbreviations: AbA = absolute amylose, PD = polydispersity, CL = average amylopectin chain-length, 
D>37 = proportion of amylopectin branch chain-lengths DP >37, RG = range of gelatinization temperature, 
PV = peak viscosity, BK = breakdown, FV = final viscosity, SB = setback, PT = pasting temperature, 
GF = gel firmness 7 d storage and GS = gel stickiness 7 d storage. * = 0.05, ** = 0.01 and *** = 0.001 
level of significance. 
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Table 3 

Correlation coefficients (r x 100) for selected squash textural attributes from fruit stored 5 weeks. 

Hrw h5 Hio H20 Frw f5 F10 F15 F20 Srw s5 Sio 
Hrw 100 

h5 44 100 

Hio -25 50 100 

H20 61* 66* 54 100 

Frw 93'" 61* -10 62* 100 

f5 11 90*" 72** 60' 28 100 

F10 2 70** 51 29 17 81'* 100 

F15 -2 68*' 62* 44 9 85'" 91'" 100 

F20 -1 62* 91"' 73" 12 82" 61* 74** 100 

Srw -64* -45 26 -34 -66' -23 13 13 11 100 

s5 -64* -43 28 -25 -62' -15 11 11 23 74" 100 

Sio -72" -6 62* -12 -64* 49 48 51 51 79" 74** 100 

S15 -64* -28 48 -15 -67** 21 31 36 37 86"' 76" 92'" 
S20 -66* -53 29 -34 -73" -19 8 10 11 92'*' 

O
 

00 

79** 

>15 

100 
93" 

Abbreviations: Hrw = hardness raw, H$ = hardness 5 min steaming, Hio = hardness 10 min steaming, H20 - hardness 20 min 
steaming, Frw = fracturability raw, F5 = fracturability 5 min steaming, F10 = fracturability 10 min steaming, F15 = fracturability 
15 min steaming, F20 = fracturability 20 min steaming, Srw = springiness raw, S5 = fracturability 5 min steaming, Sio = 
springiness 10 min steaming, S15 = springiness 15 min steaming and S20 = springiness 20 min. * = 0.05, ** - 0.01 and *** 
().()() 1 level of significance. 
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Table 4 

Correlation coefficients (r x 100) for selected squash textural and starch structural properties from fruit 
stored 5 weeks. 

ApA AbA MW Rz CL DP6-9 DP13-24 DP25-36 DPII St 

Hrw 55 67* -31 -38 73* 18 -74* 29 -10 83** 
H5 -64 3 -41 1 -16 82' 2 -21 86" -3 
HIO 

O
O

 

-54 -35 -5 -35 56 30 -52 69' -67* 
Frw 38 74* -47 -24 69' 33 -72* 25 16 69" 
F5 -75* -20 -38 6 -27 67* 14 -27 85" -39 
F10 -63 -34 -37 11 -24 67' 24 -45 63 -32 
s5 16 -49 39 43 -48 -7 67* -31 -48 -47 
Sio -63 -86" 4 17 -58 30 72* -75* 12 -84" 
S15 -29 -80* -22 -15 -34 10 52 -80* -24 -67* 
S20 11 -62 -6 -10 -12 -18 36 -57 -57 -51 
ApA 100 57 4 -7 51 -42 43 46 -72* 89** 
AbA 100 -7 5 64 -5 -74* 72* 12 74* 
MW 100 82" -22 -16 36 39 10 -10 
Rz 100 -24 25 35 40 24 -13 
CL 100 -34 -95" 57 -8 67* 
DP6-9 100 31 -33 54 -13 
DP13-24 100 -62 15 -64 
DP25-36 100 10 51 
DPII 100 -44 

Abbreviations: Hrw = hardness raw, H5 = hardness 5 min steaming, Hi0 = hardness 10 min steaming, F™ = fracturability 
raw, Fs = fracturability 5 min steaming, F10 = fracturability 10 min steaming, S5 = springiness 5 min steaming, Si0 = 
springiness 10 min steaming, Si5 = springiness 15 min, S2o = springiness 20 min, ApA = apparent amylose, AbA = 
absolute amylose, Mw = weight-average amylopectin molecular weight, Rz = gyration radius, CL - average 
amylopectin chain-length, DP6.9 = proportion of amylopectin branch chains DP 6-9, DP 13.24 = proportion of amylopectin 
branch chains DP 13-24, DP25-36 = proportion of amylopectin branch chain-lengths DP 25-36, DPII = second DP peak, 
RG = range of gelatinization temperature and St = starch content. * = 0.05, ** = 0.01 and *** = 0.001 level of significance. 
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Table 5 

Correlation coefficients (r x 100) for selected squash textural and starch functional properties 
from fruit stored 5 weeks. 

AH RG %re PV BK FV SB PT GS 

HRW 59 -93*" -68" 62 18 37 3 17 -79** 
H5 -50 4 -22 -43 10 -81* -95" -42 5 
HIO -77* 46 -14 -78* -36 -85** -94*** -11 -18 
H20 4 -57 -75* 0 -14 -19 -52 11 -79* 
Frw 34 -81" -68* 46 15 20 -13 13 -61 
Fio -50 31 -40 -82** -42 -83" -93*** -5 2 
Fl5 -44 30 -41 -81* -42 -83* -93** -5 -50 
F20 -51 32 -41 -82** -47 -80** -90*** 0 -47 
Srw 11 22 -34 -60 -85** -2 1 64 24 
SLO -57 67* -13 -93*** -82** -52 -49 37 36 
S15 -26 33 -40 -74 -94** -24 -33 65 -11 
S20 7 17 -44 -50 -95*" 12 5 82* 57 
AH 100 -67* -21 89** 51 75* 73* -4 -24 
RG 100 55 -73* -28 -49 -20 -14 62 
%re 100 15 64 -6 29 -67* 73* 
PV 100 59 77* 68* -5 -72* 
BK 100 0 10 -83* 19 
FV 100 92*** 53 -80** 
SB 100 35 -69* 
PT 100 -45 

Abbreviations: Hrw = hardness raw, H5 = hardness 5 min steaming, Hi0 = hardness 10 min steaming, H2o = hardness 
20 min steaming, F^ = fracturability raw, Fi0 = fracturability 10 min steaming, Fis = fracturability 15 min steaming, 
F2O - fracturability 20 min steaming, Sra, = springiness raw, Sio = springiness 10 min steaming, Sis = springiness 15 
min steaming, S2o = springiness 20 min, AH = enthalpy change of gelatinization, RG = range of gelatinization 
temperature, PV = peak viscosity, BK = breakdown, FV = final viscosity, SB = setback, PT = pasting temperature 
and GS = gel stickiness 7 d storage. * = 0.05, ** = 0.01 and *** = 0.001 level of significance. 
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Table 6 

Correlation coefficients (r x 100) for selected squash starch structural and functional properties from fruit stored 5 weeks. 

ApA AbA Rz CL DP>37 AH RG AHR PV BK FV SB PT 

ApA 100 
AbA 57 100 
Rz -7 5 100 
CL 51 64 -24 100 
DP>37 38 62 -50 -83" 100 
AH 94'" 56 -9 29 24 100 
RG -68* -62 45 -56 -51 -67* 100 
AHR 75* 45 8 0 1 84** -28 100 
PV 88'' 73* -58 61 59 89** -73* 56 100 
BK 24 74* -13 6 18 51 -28 72* 59 100 
FV 95'" 29 -36 59 46 75* -49 35 77* 0 100 
SB 90*" 24 0 38 26 73* -20 60 68* 10 92'** 100 
PT 29 -39 -21 33 19 -4 -14 -50 -5 -83" 53 35 100 
GF 66* -25 -32 63 47 -26 -15 -91" 5 -82" 96'" 

*0
0 

00 

93"* 
GS -89" -23 81" -90*** -78* -24 62 69* -72* 19 -80" -37 -45 

GF 

100 
-67* 

Abbreviations: Ap* = apparent amylose ABA = absolute amylose, RZ = gyration radius, CL = average amylopectin chain-length, 
D>37 = proportion of amylopectin branch chain-lengths DP >37, AH = enthalpy change of gelatinization, RG = range of 
gelatinization temperature, AHR = enthalpy change of retrograded thermal transition, PV = peak viscosity, BK = breakdown, FV 
final viscosity, SB = setback, PT = pasting temperature, GF = gel firmness 7 d storage and GS = gel stickiness 7 d storage. * = 
0.05, ** = 0.01 and *** = 0.001 level of significance. 
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Table 7 

Correlation coefficients (r xlOO) of selected squash textural attributes from fruit stored 10 weeks. 

H™ Hs Hio His H20 Frw Fs F10 Fis F2o SNV Sio 
HRW 100 

H5 40 100 

HIO -31 O
N 100 

His -22 51 90'" 100 

H20 11 

*0
0 

<
0 

64' 71" 100 

Frw 89'" 34 -6 5 17 100 

Fs -22 66' 90"' 85"' 66* 12 100 

F10 -11 58' I f *  75" 44 26 86'" 100 

Fis -17 57* 51 57* 88"' 0 68'' 44 100 

F20 -17 61* 85"' 75" 64' 11 91'" 85"' 66' 100 

S™ -76" -35 29 26 -5 -68" 19 0 10 14 100 

S10 -71" 4 66* 55 18 -45 51 55 37 62' 50 100 

Sis -79" -37 58* 34 19 -56* 29 50 16 53 65' 89"' 
S20 -83"' 31 29 48 -9 -64* 57* 21 32 21 81" 62' 

>15 

100 
85"' 

Abbreviations: Hrw = hardness raw, H5 = hardness 5 min steaming, Hio = hardness 10 min steaming, H15 = hardness 15 min 
steaming, H20 = hardness 20 min steaming, Frw = fracturability raw, F5 = fracturability 5 min steaming, F10 = fracturability 
10 min steaming, F15 = fracturability 15 min steaming, Sio = springiness 10 min steaming and S20 - springiness 20 min 
steaming. * = 0.05, ** = 0.01 and *** = 0.001 level of significance. 
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Table 8 

Correlation coefficients (r x 100) for selected squash textural and starch structural properties from 
fruit stored 10 weeks. 

APa Mw Mz PD, PDZ Rz CL DP 25-36 D>37 DP>26 St 
HI» 55 -85^ -83' -58 -58 -89" 76* -82' 78" -36 80" 
H5 -88" 57 66 47 53 58 15 -12 25 65 -42 
HIO -94" 64 84' 88" 91" 73 2 39 4 O

O
 

-67' 
H15 -86* 53 79* 92" 95" 65 4 45 4 87 -49 
H20 -80* 41 68 89" 91" 52 18 37 17 87* -28 
Frw 37 -66 -67 -61 -58 -72 69 -92" 76' -34 63' 
F5 -92** 55 -79* 87* 89" 75* -7 33 2 83' -56* 
F10 -89" 61 84* 91" 94" 71 -2 47 -2 86' -43 
Fis -87* 57 82' 92" 95" 69 -1 46 -1 

O
O

 

-41 
F20 -79* 58 79' 80' 85* 62 3 37 1 71 -56' 
Sio -62 O

O
 

80* 39 45 61 -14 34 -25 40 -80" 
Sis -57 70 81* 77* 76* 60 -18 71 -33 57 -69' 
S20 -46 70 81' 77* 77* 74 -59 95" -69 40 -47 
ApA 100 -72 -84' -75* -79* -81* 7 -27 -1 -86* 80' 
Mw 100 93" 49 54 90" -55 53 -56 39 -94" 
Mz 100 76 80' 94" -46 64 -47 61 -93" 
PDW 100 100'" 70 -18 69 -19 83' -68 
PDZ 100 72 -17 67 -17 84* -65 
RZ 100 -64 63 -58 53 -97" 
CL 100 -66 96" 24 59 
DP25-36 100 -76* 29 -63 
D>37 100 26 56 
DP>26 100 -55 

Abbreviations: H™ = hardness raw, H; = hardness 5 min steaming, H10 = hardness 10 min steaming, H15 = hardness 15 min steaming, H20 = 
hardness 20 min steaming. F™ = fracturability raw, F5 = fracturability 5 min steaming, F10 = fracturability 10 min steaming, FiS = fracturability 
15 min steaming, S]0 = springiness 10 min steaming, S20 = springiness 20 min, ApA = apparent amylose, Mw = weight-average amylopectin 
molecular weight, Mz = z-average amylopectin molecular weight, PD = polydispersity, Rz = gyration radius, CL = average amylopectin chain-length, 
DP2s-36 = proportion of amylopectin branch chain-lengths DP 25-36, D>37 = proportion of amylopectin branch chain-lengths DP > 37, DP>26 = 
proportion of amylopectin branch chain-lengths DP > 26 and St = starch content. * = 0.05, ** = 0.01 and *** = 0.001 level of significance. 
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Table 9 

Correlation coefficients (r x 100) for selected squash textural and starch functional properties from fruit 
stored 10 weeks. 

To TP Tc AH AHr PV BK FV PT GF GS 

Hio 82" 89" 86" -97"" 

\o OO 

-14 97" -94' 

ON OO 

-92" -26 
His 90" 92" 83* -96** 

0
 

OO 

-69 41 -31 0
0
 

K
) 

-17 -79 
H20 91" 96" 86* -93" -81* -19 -55 63 -12 88' -44 
Frw -10 -12 -18 45 -9 36 -23 28 -30 32 88' 
f5 87* 78 70 -86* -82* 84* 56 -61 -24 -54 69 
F10 88" 90' 83* -96*** -80* -37 88* 

OO OO 

-57 -90* -41 
F15 91" 90* 81* -95" -79* -17 79* -83* -29 -97" -12 
F20 93" 89* 77* -89" -77* -95* 18 -14 -21 -17 12 
Srw -3 35 53 -60 -20 -78 53 -50 -39 -42 -88* 
To 100 79* 59 -74 -67 67 -72 66 76 47 77 
TP 100 95" -92** -84* -57 -16 27 -49 31 -94* 
Tc 100 -92* -86* -59 25 -15 -78 -25 -94* 
AH 100 

O
 

OO 

76 -60 -52 76 47 84 
AHr 100 -13 -57 50 90' 95* -17 
PV 100 1 -8 20 -1 100" 
BK 100 -99" -76 1 O

 
:°

8 

-1 
FV 100 69 

O
 

O
 -6 

PT 100 97" 26 
GF 100 -4 
GS 100 

Abbreviations: H10 = hardness 10 min steaming, H]5 = hardness 15 min steaming, H20 = hardness 20 min steaming, Frw = fracturability raw, F5 = 
fracturability 5 min steaming, Fi0 = fracturability 10 min steaming, F2o = fracturability 20 min steaming, Srw = springiness raw, T0 = onset 
gelatinization temperature, Tp = peak gelatinization temperature, Tc = conclusion gelatinization temperature, AH = enthalpy change of gelatinization, 
AHr = rétrogradation enthalpy change of gelatinization, PV = peak viscosity, BK = breakdown, FV = final viscosity, PT = pasting temperature, GF = 
gel firmness 7 d storage and GS = gel stickiness 7 d storage. * = 0.05, ** = 0.01 and *** = 0.001 level of significance. 
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Table 10 

Correlation coefficients (r x 100) for selected squash starch structural and functional properties from 
fruit stored 10 weeks. 

ApA AbA PD Mw Rz AH AHr BK FV 
ApA 100 
AbA 39 100 
PD -75* -20 100 
Mw -72 -40 49 100 
Rz -81* -44 70 

l o
 

0
\ 

100 
AH 89" 24 

:
 oo oo 

-62 -67 100 
AHr 87* -88** -56 -39 -42 80* 100 
BK -98" -99** -41 76 68 -60 -57 100 
FV 98" 99" 32 -79 -75 -52 50 -99** 100 
PT 78 70 89* -31 -6 76 90* -76 69 
GF 93* 58 44 -91* -99** 47 95" -100** 100 

PT 

100 
69 

Abbreviations: Ap& = apparent amy lose AbA = absolute amylose, PD = polydispersity, Mw = weight-average 
amylopectin molecular weight, Rz = gyration radius, AH = enthalpy change of gelatinization, AHr = 
retrograded enthalpy change of gelatinization, PV = peak viscosity, BK = breakdown, FV = final viscosity, 
PT = pasting temperature and GF = gel firmness 7 d storage. * = 0.05, ** = 0.01 and *** = 0.001 
level of significance. 
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CHAPTER 6. ROLE OF STARCH STRUCTURE IN TEXTURE OF SQUASH AND 
STARCH FUNCTIONAL PROPERTIES. V. TRANSMISSION OF ULTRASOUND 
AND MICROSCOPIC OBSERVATIONS OF WINTER SQUASH (Cucurbita maxima 
D.) FRUIT TO EXAMINE TEXTURE AND CORRELATIONS WITH STARCH AND 

CELL WALLS. 

A paper to be submitted to Journal of Agricultural and Food Chemistry 

David G. Stevenson1, David Utrata2, David K. Hsu2, and Jay-lin Jane1 

department of Food Science & Human Nutrition, Iowa State University, Ames, IA, 50011, 
USA. 

2 Center for Nondestructive Evaluation, 1915 Scholl Road, 111 ASC II, Ames, IA, 50011-
3042, USA. 

^Corresponding author (phone 1 515 294 9892; fax 1 515 294 8181; e-mail 
i i ane@iastate. edu) 

ABSTRACT 
Twelve winter squash cultivars had fruit stored 7.5 weeks and low-frequency ultrasound 

transmitted through fruit raw and steamed 10 or 20 min, with significant differences in 

ultrasonic velocity (UV) between squash cultivars for fruit raw and steamed 10 min. UV 

through raw squash fruit was comparable or slower than air, ranging from 190-362 m s"1. 

UV increased after 10 min steaming and the five high-starch squash cultivars had the fastest 

UV. Despite fruit becoming at least 20 times softer after 20 min steaming, UV increased 

ranging from 1,950-2,800 m s"1. Light micrographs show that high-starch squash cultivars 

steamed 10 min have cells engorged 50-100% of volume with gelatinized starch, which 7 

low-starch cultivars do not possess, suggesting the swollen gelatinized starch mass 

contributes to the higher UV. Fruit cell wall rupturing depended on cultivar and cooking 

time. Light micrographs indicate that starch and cell walls contribute to texture, but an 
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additional factor also contributes to texture. UV seemed related to the behavior of starch 

within cells and cell wall structure. 

KEYWORDS: Ultrasonic velocity, ultrasound, nondestructive evaluation, winter 

squash, pumpkin, cucurbits, texture, starch, cell walls, light microscopy, postharvest, 

storage. 

INTRODUCTION 

Texture of cooked winter squash is an important aspect in determining consumer preference 

(1, 2). Previous studies have measured changes in squash mechanical properties after 

cooking using an Instron Universal Testing Machine or TAXT2 texture analyser (3,4, 

Chapter 4). Application of nondestructive, low-frequency ultrasound waves for measuring 

textural properties of plant tissues has been reported (5, 6, 7). The use of ultrasound for 

measurement of plant tissue, other than wood, is rare, but there is increasing interest in 

utilizing ultrasonic velocity measurements of fruit and vegetables to determine textural 

attributes. 

Ultrasonic velocities through fruit and vegetable tissues are extremely slow compared 

with plastics or metals (8) and vary according to species and cultivars within species (9). 

Low-frequency ultrasound, below 50 kHz, has been found to be optimal for measuring 

ultrasonic transmission through plant tissue, as higher frequencies result in high attenuation 

and difficulty interpreting signals (10). Additionally, at low-frequency ultrasonication, 

pressure and temperature gradients produced by ultrasonic waves are small, passing through 

plant tissues without altering physical and chemical properties, and therefore are 

nondestructive. Thickness of fruit and vegetable tissue samples used in ultrasonic evaluation 

has necessitated pulse through-transmission rather than pulse-echo techniques to avoid high 
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attenuation. Ultrasonic velocity depends on the elastic modulus and density of the tissue 

with most variation between tissues explained by elastic modulus (9). Quasi-static modulus, 

measured by Instron Universal Testing Machine, does not directly relate to ultrasonic 

velocity, but is related to the dynamic modulus that ultrasonic velocity does depend on. 

Air content of plant tissues has also been found to be an important factor influencing 

ultrasonic velocity (9). It is proposed that air content has an indirect effect on velocity 

through an effect on elastic modulus, in which greater air content could reduce area of cell to 

cell contact, resulting in decreased elastic modulus and velocity. 

Low-frequency ultrasonics has been used for textural measurements of cooked carrots 

(8). Raw carrots had a damped oscillation pulse that changed shape and decreased amplitude 

after just 1 min cooking. During further cooking, ultrasonic signals became more complex, 

echoes developed and amplitude increased. Raw carrot tissue was composed of polyhedral 

cells with few intercellular spaces, but after heating, irregular cell shapes emerged with the 

development of intercellular cavities between separated middle lamellas. Despite decreasing 

firmness during extended heating, ultrasonic velocity increased and attenuation (a) 

decreased, which may be due to exclusion of air from the tissue, the simultaneous release of 

cell contents into the intercellular spaces, or the absorption of water. 

Ultrasonic velocity was measured in tangential and radial sections of apple 

parenchyma, which was significantly higher in the latter orientation (11). Storage modulus 

of apple tissue was also found to be higher for radial sections, corresponding to ultrasonic 

velocity. Apple cortical cells were found to be radially elongated and intercellular air spaces 

were arranged in radial columns. Studies on bananas have shown intercellular spaces 

decrease during ripening resulting in increased ultrasonic velocity (12). 
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Recently, ultrasound has been applied to avocado harvestable maturity and softening 

during storage. Analysis of attenuation of ultrasonic signals yielded good linear fits 

indicating ultrasound was a good nondestructive method for measuring dry weight content, 

thereby providing a useful maturity index tool (13, 14) and good for measuring firmness 

during storage (15). However, high variation in ultrasonic measurements between individual 

fruit was observed (16). 

In this study we measure the ultrasonic velocity of twelve winter squash cultivars 

fruit, raw and cooked. We fixed samples from same raw and cooked fruit sections, and used 

light microscopy to observe, at the cellular level, changes in starch and cell wall morphology 

to explain differences in ultrasonic velocity we observed. We also relate ultrasonic velocity 

measurements and light microscopy observations to textural attributes of raw and cooked 

squash measured previously using an Instron Universal Testing Machine (Chapter 4), and 

fruit composition, such as starch content that was measured previously (Chapter 2). 

MATERIALS AND METHODS 

Plant Material. Twelve winter squash cultivars (Cucurbita maxima D.) were used for 

ultrasonic velocity studies. Experimental layout of squash plantings, cultivation, harvest, 

storage procedures and source of seeds have been described previously (Chapter 2). Twelve 

winter squash cultivars included four buttercup squash (Cha Cha, Delica, Kurijiman and 

Sweet Mama), one closely-related buttercup cross (Hyvita), two Halloween-type squash (Big 

Max and Rouge Vif D'Etampes), one native American Indian squash (Lakota), one Hubbard-

type squash (Warren Scarlet), one Crown-type squash (Whangaparoa Crown) and two non

commercial squash obtained from seed germplasm center (Yogorou and Zapallo Macre). 
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Ultrasonic Velocity Measurements. Three replicates of all twelve squash cultivars were 

measured for transmission speed of ultrasound. One fruit per replicate was randomly 

selected from fruit stored for 7.5 weeks at 12°C. A region of the fruit was randomly selected, 

as described previously (Chapter 4), and from this region, three, 3 cm wide at the equator, 

longitudinal segments were removed. Squash fruit were steamed as described previously 

(Chapter 4) for 0, 10 or 20 min. 

After each segment was steamed for its appropriate time, a 20 mm diameter apple 

corer (Oxo brand, BASF Corp., Mount Olive, NJ) with recessed cutting edge, preventing 

further compression, was used to immediately procure a fruit cylinder, cut from the direction 

of seed cavity to skin, that was gently placed inside a sizing disk that was made of rigid 

plastic having a central hole into which the sample was slid. A razor knife was used to slice 

through the cylindrical cored squash sample protruding from either end of the sizing disk, 

thus producing a sample of known thickness. Three sizing disks were employed, allowing 

the preparation of samples that measured 10.5, 8.7, and 6.9 mm long to be obtained. The 

squash fruit region immediately under the skin, and the pulpy, fibrous area near the interior 

of specimen were avoided. Sliced fruit cylinders were then gently slid out of the sizing disk 

and placed on face of one 100 kHz transducer (GE Panametrics, Atlanta, GA). A thin foam 

plastic wafer, having a cutout for the squash sample was then slid down around the squash 

sample, allowing the cored sample to be centered with middle of transducer. A Perspex™ 

collar was used to align the transducers applied, and the second transducer was slid down 

into the collar. While active elements in transducers were covered by the squash sample, it 

was determined that a foamed plastic wafer was needed to defeat transmission of signal 

attributes that obfuscated the real signal's appearance on the oscilloscope. Transducers were 



www.manaraa.com

324 

connected to a Panametrics 5058 PR high-voltage pulser-receiver (GE Panametrics, Atlanta, 

GA) to generate and receive ultrasonic signals through squash samples. Transducers 

measured 44.5 mm in diameter, while active piezoelectric element within these housings was 

actually 15.9 mm in diameter, thus the 20 mm diameter squash cylinder was sufficiently 

large enough to cover the useful portion of ultrasonic signal. The pulse-receiver was 

connected to a LeCroy 9310L digital oscilloscope (LeCroy Corp., Chestnut Ridge, NY) to 

permit viewing and acquisition of ultrasonic signals produced in this experiment. Typically, 

the weight of transducers was sufficient to make viable contact between the send/receive 

transducers and squash sample, although a small amount of ultrasonic coupling gel was used 

to wet transducer faces to ensure good contact. Attention was focused on careful sizing of 

squash samples in the rigid rings to avoid warping the sample's dimensions and disturbing 

internal structure. Although error could have occurred during this process, care was taken to 

prevent damage to the specimen, and replicate measurements were always made at various 

squash thicknesses to minimize this effect, with values markedly different from others 

discarded. Raw samples generally showed good behavior during the sizing process, 

exhibiting little undesirable deformation during slicing operation. More care was 

necessitated in preparing cooked samples, with consistency of some samples making velocity 

measurements more challenging. 

The waveforms collected from the digital oscilloscope were transferred to computer 

as text files consisting of X, Y pairs, or the collection of time/amplitude values. A common 

feature of the various waveforms, the first significant positive peak, was chosen as the point 

of comparison between various samples and zero. Zero length was represented by time-of-

flight for the case where the two transducers were in contact with one another. Time-of-
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flight for a given length of a particular cultivar was the difference between first significant 

positive peak for that sample's waveform and the same feature on the zero waveform. 

Depending on sample material, including cultivar and whether sample was in raw or cooked 

state, waveforms obtained presented a range of indications of the first positive peak. Some 

signals were unambiguous, showing very clearly the sinusoidal waveform desired. Others 

required manipulation of the scale upon which data was plotted to permit a reasonable 

assessment of transit time of the signal. 

Squash Fruit Preparation for Light Microscopy. After each longitudinal fruit segment 

was steamed for its appropriate time and a fruit cylinder had been removed for ultrasonic 

velocity measurements, a section (1 cm wide, traversing entire length from seed cavity to 

skin exterior) of the slice 2 cm away from the fruit cylinder was immediately removed and 

used for light microscopy sample preparation. The section was trimmed so that it was still 1 

cm wide, but 0.5 cm long that included the fruit flesh that was half way between seed cavity 

and skin exterior. This 1 x 0.5 cm section was gently sliced into 2 x 2.5 mm pieces and 

placed immediately into a fixative consisting of 2% (v/v) paraformaldehyde (made from 16% 

formaldehyde solution, electron microscopy (EM) grade) and 3% (v/v) glutaraldehyde (made 

from 70% glutaraldehyde, EM grade) in 0.05 M sodium cacodylate buffer, pH 7.2, with all 

three reagents obtained from Electron Microscopy Sciences, Fort Washington, PA. Squash 

fruit samples then underwent dehydration process consisting of deionized water rinse to 

remove fixative, followed by 50% ethanol for 30 min, 70% ethanol for 30 min, 95% ethanol 

for 30 min, 0.5% (w/v) eosin stain in 95% ethanol for 3 min, 2 x 100% ethanol for 30 min, 

ethanol :xylene (1:1) for 1 h, 100 % xylene for 30 min, and 100% xylene for 3 h. Ethanol and 

xylene were obtained from Fisher Scientific, Pittsburgh, PA. Squash fruit pieces then had 
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medium, 52°C melting point, Fisher Scientific, Pittsburgh, PA) and placed at 60°C. Paraffin 

infiltration was continued four more times, with a greater amount of the xylene/paraffm 

medium removed with each progressive infiltration step, until squash pieces were in 100% 

paraffin. Squash pieces in paraffin were then poured into an aluminum pan and allowed to 

harden by cooling. Paraffin-embedded squash pieces were sectioned on a rotary microtome 

(Spencer "820" microtome, American Optical Co., Buffalo, NY), with a section thickness of 

9 (j,m. Paraffin ribbons were divided and strips consisting of serial sections were placed on 

glass microscope slides. 

Staining of Paraffin Sections for Light Microscopy. Paraffin was removed from squash 

fruit sections by two washes, for 2 min, in 100% xylene, followed by 2 min washes in 

xylene:ethanol (1:1) and 100% ethanol. Sections were further hydrated in 2 min steps of 

95% ethanol, 70% ethanol, 50% ethanol and deionized water. Five staining procedures were 

used as follows: (1) 2% (w/v) hematoxylin in deionized water for 15 min and counterstained 

with 1% (w/v) safranin O in 50% ethanol for 24 h (HS); (2) 2% (w/v) hematoxylin in 

deionized water for 15 min and counterstained with 0.15% (w/v) fast green in 95% ethanol 

for 10 s (HF); (3) 1% (w/v) safranin O in 50% ethanol for 24 h and counterstained with 0.5% 

(w/v) chlorazol black E in 100% ethanol for 15 min (SC); (4) 0.2% (w/v) ruthenium red, 

made fresh in deionized water, for 20 min; (5) 1% (w/v) h, 1% (w/v) KI in deionized water 

for 15 min. All stains were purchased from Sigma Chemical Co., St Louis, MO. For the first 

four staining procedures, after staining, slides were dehydrated on 2 min step increments of 

increasing ethanol concentration, followed by ethanohxylene (1:1), and then two washes in 

100% xylene before permanently mounted. Observations for iodine stained squash sections 
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were carried out immediately after staining since dehydration steps required for permanent 

mounting remove iodine stain. 

Light Microscopy of Stained Squash Sections. Slides of stained squash sections were 

observed under an Olympus BX40 compound light microscope (Leeds Precision Instruments, 

Minneapolis, MN) and images were captured on a Zeiss Axiocam MRc color digital camera 

(Carl Zeiss Microscopy, Gôttingen, Germany). 

RESULTS AND DISCUSSION 

Ultrasonic Velocity Transmitted Through Raw Squash Fruit. Ultrasonic velocity 

transmitted through raw squash fruit ranged from 193 to 362 m s"1 (Table 1). Velocity 

measurements are extremely slow relative to other materials and are comparable or slower 

than ultrasonic velocity through air (330 m s"1). Ultrasonic velocity transmitted through 

papaya fruit has also been reported to be slower than air (17). Significant differences in 

ultrasonic velocity were observed between the raw fruit of squash cultivars, with velocity 

transmitted through Kurijiman and Lakota faster than Big Max and Hyvita (P = 0.0006). 

Although raw Lakota fruit had the fastest velocity, the four buttercup cultivars, Cha Cha, 

Delica, Kurijiman and Sweet Mama, which all have high starch content, were the next 

fastest. Big Max, which had considerably slower ultrasonic velocity than all other squash 

cultivars, accumulated very little starch or dry matter. Hyvita was an exception, with high 

starch content, but substantially slower velocity. The ultrasonic signal showed high 

attenuation, which has been attributed to presence of air in the intercellular spaces which 

scatter ultrasonic waves (18). Intercellular air spaces, which are larger in raw fruit and 

vegetable tissues than cooked ones, are thought to cause the slow ultrasonic velocity, but the 



www.manaraa.com

328 

heterogeneous composition of cells, including cellular contents, cell walls and air spaces may 

all contribute to the slow velocity. In particular, the cell wall, a composite of cellulose, 

hemicelluloses and pectin, may refract and reflect ultrasound, retarding its transmission. 

Ultrasonic Velocity Transmitted Through Cooked Squash Fruit. Ultrasonic velocity of 

cooked fruit increased, relative to raw, for all squash cultivars (Table 1). Ultrasonic velocity 

was significantly different depending on cooking time (P < 0.0001), and there was also a 

highly significant cultivar*cooking time interaction (P = 0.006). All buttercup squash 

cultivars had large increases in ultrasonic velocity after fruit was steamed for 10 min, 

resulting in buttercup squash cultivars with the fastest velocities (all above 1,750 m s"1). The 

squash cultivar with the next highest ultrasonic velocity, Hyvita, is closely related to 

buttercups, since it is a cross between a buttercup and a non-buttercup cultivar, Green 

Delicious. Squash cultivars with very slow ultrasonic velocity, Big Max, Rouge Vif 

D'Etampes, Whangaparoa Crown, Yogorou and Zapallo Macre, were Halloween-type or 

other squash which after 7.5 weeks storage had very low starch content (< 2% of dry weight 

(18)). Significant differences (P = 0.0002) in ultrasonic velocities were observed between 

fruit of the squash cultivars steamed for 10 min, with velocity of Kurijiman and Sweet Mama 

faster than Big Max, Yogorou and Zapallo Macre. Additionally velocity of Cha Cha and 

Delica was faster than Big Max and Zapallo Macre. After 20 min steaming, ultrasonic 

velocity transmitted through squash fruit was faster than that after 10 min, but was not 

significantly different between the cultivars. Buttercup squash were four of the five fastest 

samples. Squash fruit velocity increased after cooking, despite fruit hardness becoming 

considerably softer. 
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Increasing ultrasonic velocity with cooking time has previously been reported for 

boiled carrots (8). Raw carrots velocity was 420 m s"1, decreased to 300 m s"1 after boiling 

for 2 min and then increased to be 1,150 m s"1 after 10 min steaming and 1,350 m s"1 after 15 

min steaming. Velocities for raw and cooked carrots are comparable to the velocities we 

observe for squash fruit. 

Light Micrographs In Relation to Instron Universal Testing Machine Texture 

Measurements. Four buttercup cultivars, stored for 5 or 10 weeks, all had relatively high 

hardness compared to all squash cultivars when raw (Chapter 4). Light micrographs of raw 

fruit stored for 7.5 weeks show the four buttercup cultivars had parenchyma cells containing 

starch granules (Figure IB, 1C, IE and 1H) that were absent in most other squash cultivars, 

and is reflected in starch content previously shown (Chapter 2). Halloween-type squash 

cultivars, which had considerably lower hardness when raw than all other squash cultivars 

(Chapter 4), had relatively large parenchyma cells, with no starch granules (Figure 1A and 

1G), confirming starch content analysis shown previously (Chapter 2). Hyvita, a close 

relative to buttercup squash, also had parenchyma cells containing starch granules (Figure 

ID), but was significantly softer than all four buttercups after 5 weeks storage, and all except 

Sweet Mama after 10 weeks storage (Chapter 4). Degradation of cell walls could not be 

attributed to differences in hardness of raw fruit, after 5 or 10 weeks storage, because 

Kurijiman and Sweet Mama that were both relatively firm (Chapter 4) showed considerable 

breakdown of some cells to form very large intercellular spaces (Figure IE and 1H), 

whereas cultivars such as Yogorou had significantly lower hardness (Chapter 4) but less cell 

wall degradation (Figure IK), and Whangaparoa Crown had similar cell wall degradation 

(Figure 1 J), but was significantly softer (Chapter 4). We were concerned that fixation 
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methods could have caused cell wall damage. Sections were collected from squash fruit that 

were grown in the subsequent year, also after 7.5 weeks storage. The light micrographs of 

the sections showed similar patterns of cell wall degradation. While we can not discount that 

the fixative solution used could be inappropriate for squash fruit preservation, the fixative is 

commonly used for many plant tissues. Therefore we feel the cell wall degradation observed 

for some squash cultivars is part of the natural phenomenon of fruit senescence (19). 

Fracturability measurements of raw squash fruit, stored for 5 or 10 weeks, showed 

that buttercup squash cultivar fruit typically fractured at a higher force than low-starch 

cultivars, especially Halloween-type (Chapter 4). Light micrographs of raw fruit stored for 

7.5 weeks, showed the buttercups all have small parenchyma cells with starch granules 

present (Figure IB, 1C, IE and 1H), whereas Halloween-type had larger cell sizes with 

some cell wall degradation, and no starch granules present (Figure IA and 1G). Lakota, 

stored for 7.5 weeks, based on starch content after 5 and 10 weeks storage, had low starch 

content compared to Hyvita, but required nearly twice the force to fracture raw fruit (Chapter 

4). Light micrographs of Lakota and Hyvita (Figure ID and IF) do not appear to clearly 

explain the differences we observe in fracturability, but Lakota has thicker cell walls that 

may be a contributor. Additionally, especially Lakota and Whangaparoa Crown, but also 

Yogorou and Zapallo Macre, had considerably higher fracturability compared to other squash 

cultivars after 10 weeks storage and 10 min steaming, but light micrographs do not seem to 

explain this observation as Lakota and Yogorou have maintained a high proportion of 

cellular integrity (Figure 2F and 2K), whereas Whangaparoa Crown and Zapallo Macre have 

extensive cell wall breakdown (Figure 2J and 2L). All four cultivars do have one thing in 

common, a lack of starch granules after 7.5 weeks storage, but Big Max, Rouge Vif 



www.manaraa.com

331 

D'Etampes and Warren Scarlet also lack presence of starch granules (Figure 2A, 2G and 21), 

but had fracturability similar to high-starch cultivars. After 20 min steaming of fruit stored 5 

or 10 weeks, Yogorou had highest fracturability and was the only cultivar which still showed 

high proportion of cellular integrity maintained (Figure 3K). High-starch cultivars steamed 

for 20 min have gelatinized starch interacting with cell walls (Figure 3B, 3C, 3D, 3E and 

3H), which when compressed may readily fracture, explaining the low fracturability 

observed (Chapter 4). 

The two Halloween-type squash cultivars, stored for 5 or 10 weeks, had the highest 

springiness when raw, and light micrographs show these two cultivars had the lowest level of 

cellular organization (Figure IA and 1G), in which cell sliding is conducive, which has 

previously been reported to result in greater viscoelastic properties (22, 23). However after 

10 min steaming, Lakota has considerably high springiness but does not show the same level 

of cell wall destruction (Figure 2F) that other high springiness cultivar fruit exhibit (Figure 

2A, 2G and 2J). After 10 weeks storage and steamed for 20 min, Big Max, Lakota and 

Rouge Vif D'Etampes had highest springiness and all three cultivars, after 7.5 weeks storage, 

had weak staining intensity of cell wall matrix compared to other cultivars (Figure 3 A, 3F 

and 3G). Low staining intensity, which included ruthenium red staining, a stain specific for 

pectin, may indicate greater pectin breakdown, increasing viscoelastic properties of cell 

walls. 

After squash fruit was steamed for 10 min, the four buttercup cultivars and closely 

related Hyvita, from fruit stored 7.5 weeks, all had a mass of aggregated gelatinized starch 

filling 50 to 100 percent of cell volume (Figure 2B, 2C, 2D, 2E and 2H). Light micrographs 

of Cha Cha fruit represent iodine staining of the high-starch cultivars, demonstrating how the 
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small starch granules of raw fruit (Figure 4 A), swelled substantially after 10 min steaming 

(Figure 4B), and swollen gelatinized mass appeared, on average, to reduce in size after 20 

min steaming (Figure 4C). The five high-starch squash cultivars, stored for 5 or 10 weeks 

and steamed for 10 min, had hardness ranging from 28 to 75 N (Chapter 4). There was little 

evidence that engorgement of gelatinized starch had distended to cause cell wall breakdown 

after 10 min steaming since all had majority of cell wall matrix intact, except for Sweet 

Mama which already had some cell wall breakdown when raw. The two Halloween-type 

cultivars had similar size cells after 10 min steaming compared to raw (Figure IA, 1G, 2A 

and 2G). Whangaparoa Crown also had little change in cell size or degree of degradation 

after 10 min steaming compared with raw fruit (Figure 1J and 2 J), but Warren Scarlet and 

Zapallo Macre both had larger cell sizes or extensive cell wall breakdown (Figure II, 1L, 21 

and 2L). Halloween-type cultivars and the latter three cultivars mentioned, which all had 

larger cell size or air spaces compared to high-starch cultivars, were considerably harder than 

high-starch cultivars, after 10 min steaming, with hardness ranging from 89 to 323 N for fruit 

stored 10 weeks (Chapter 4). Relatively high hardness of Lakota fruit, after 5 or 10 weeks 

storage and steamed 10 min (Chapter 4), is difficult to explain because although Lakota cells 

lacked presence of starch granules that were the attribute of softer fruit texture, the cell walls 

were still largely intact, unlike all other squash cultivars with firm texture. Low-starch 

squash cultivars that have cells with high amounts of free water may maintain turgor pressure 

more effectively than high-starch squash cultivars that have gelatinized starch entrapping 

large quantities of water, which may have sponge-like texture plus reduced turgor pressure of 

cells. Higher maintenance of turgor pressure has been shown to reduce softening rate (22, 

23, 24). 
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Yogorou, which had the firmest fruit (32 N), stored for 5 weeks and steamed for 20 

min (Chapter 4), had most cell walls still intact (Figure 3K). Delica, after 20 min steaming 

of fruit stored 7.5 weeks, had most cells completely engorged with gelatinized starch, but cell 

walls were only partly ruptured (Figure 3C). The high-starch squash cultivars, Hyvita and 

Kurijiman, also had considerable amount of cells engorged with gelatinized starch but there 

was considerably greater extent of cell wall rupturing (Figure 3D and 3E). Two other high-

starch squash cultivars, Cha Cha and Sweet Mama, had aggregations of gelatinized starch 

with extensive rupturing of cell walls, and parts of cell wall were either entrapped or adhered 

to the gelatinized starch (Figure 3B and 3H). All low-starch squash cultivars except 

Yogorou, stored for 7.5 weeks and steamed for 20 min, had some degree of cell wall 

breakage, but cell wall matrix was generally more intact (Figure 3A, 3F, 3G, 31, 3J and 3L) 

compared with high-starch cultivars. 

Light Micrographs in Relation to Ultrasonic Velocity. Light micrographs reveal that 

starch content of squash cultivar fruit plays an important role influencing ultrasonic velocity 

transmitted through fruit tissue. The four buttercup cultivars, with considerably high 

ultrasonic velocity when raw and stored 7.5 weeks, all have an abundance of cells with starch 

granules (Figure IB, 1C, IE and 1H). However, Hyvita also had large proportion of cells 

with starch granules but had relatively slow velocity (Figure ID). Big Max, which 

accumulated very little starch and had no starch granules after 7.5 weeks storage, had the 

slowest ultrasonic velocity (Figure 1 A). Although the trend between ultrasonic velocity and 

starch content of fruit is not entirely clear-cut for raw fruit, steamed fruit for 10 min showed a 

very clear trend. The five high-starch squash cultivars, which had the five highest ultrasonic 

velocities after 10 min steaming, all had cells engorged with aggregations of gelatinized 
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starch, which occupied 50 to 100 percent of cell volume (Figure 2B, 2C, 2D, 2E and 2H). 

Engorgement of gelatinized starch within cells is not observed in the seven other squash 

cultivars which all had slower velocities (Figure 2A, 2F, 2G, 21, 2J, 2K and 2L). The trend 

of high-starch cultivars having higher ultrasonic velocity is not quite as clear after 20 min 

steaming, but buttercup cultivars still had four of the five fastest velocities. These four 

buttercup cultivars after 20 min steaming still showed engorgement of cells with gelatinized 

starch (Figure 3B, 3C, 3E and 3H), but Hyvita had relatively slow ultrasonic velocity and 

also exhibited cells engorged with gelatinized starch (Figure 3D). 

After 7.5 weeks storage, raw squash fruit from the cultivars varied from tissues with 

large cell wall breakdown where cellular contents were dispersed under most likely low 

turgor pressure and few visible air spaces, to tissues with most cell wall matrix maintained 

and some intercellular air spaces present (Figure 1). High-starch cultivars, had a greater 

proportion of cells intact after 10 min steaming (Figure 2B, 2C, 2D, 2E and 2H) compared 

with low-starch Halloween-type cultivars (Figure 2A and 2G), but the associated differences 

in intercellular spaces could not be attributed to observed differences in ultrasonic velocity 

because other low-starch squash cultivars had high level of cell wall integrity (Figure 2F and 

2K) but did not have relatively high ultrasonic velocity. After fruit were steamed for 20 min, 

there were no significant differences in ultrasonic velocity between the squash cultivars, and 

light micrographs showed squash tissues with diverse characteristics including having most 

cell wall matrix intact (Figure 3K), having most cell walls degraded with lack of cell 

organization (Figure 3A, 3F, 3G, 3J and 3L), and tissues with large aggregates of 

gelatinized starch interacting with cell walls that varied from high (Figure 3C) to low 

(Figure 3B) level of cell wall organization. 



www.manaraa.com

Squash fruit samples were also stained with ruthenium red which is considered by 

many to be very specific for pectin (25). Cha Cha, used as a representative of the high-starch 

cultivars, showed strong ruthenium red staining when raw indicating an abundance of pectin 

in middle lamellae of cell walls (Figure 5A). After 10 min steaming, there is a large 

decrease in staining intensity of cell walls indicating a substantial decrease in pectins (Figure 

SB) During this time, starch has gelatinized into one swollen mass, and pectin breakdown 

could be due to distension of gelatinized starch rupturing cell walls or the temperature from 

steaming could have degraded pectin. Large reduction in pectin staining occurred after 20 

min steaming and some pectic fragments of cell walls are entrapped, adhered or complexing 

with gelatinized starch (Figure 5C). Ultrasonic velocity of all buttercup cultivars was above 

1,750 m s"1 after 10 min steaming, and 2,680 m s"1 after 20 min steaming (Table 1). All 

buttercup cultivars had some cell wall breakdown after 10 min and extensive cell wall 

breakdown after 20 min, and at both cooking times, swollen gelatinized starch was very 

evident. Yogorou, a low-starch cultivar, showed little change in ruthenium red staining for 

raw and cooked squash fruit, indicating a low degree of pectin breakdown (Figure 5D, 5E 

and 5F). Yogorou's ultrasonic velocity for fruit steamed 10 and 20 min was 696 m s"1 and 

2,068 m s"1, respectively (Table 1). There was no significant difference between hardness of 

all 10-week stored fruit steamed for 20 min, but for 5-weeks stored fruit, Yogorou was the 

hardest, and was significantly firmer than two high-starch cultivars, Hyvita and Sweet Mama 

(Chapter 4). Therefore maintained cell wall integrity, because of lower level of pectin 

breakdown and cell separation, could result in harder texture. Cell wall breakdown resulted 

in increased ultrasonic velocity, and this may be attributed to cellulose, hemicelluloses or 

pectin in the cell wall matrix reflecting and refracting ultrasound, retarding its transmission. 
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Alternatively, aggregates of gelatinized starch mass may reduce cell structure heterogeneity, 

creating greater volume of solid material, allowing ultrasound to be transmitted more 

effectively. Scattering of ultrasonic waves by plant cells due to their heterogeneous makeup 

has been reported (18). Magnified images of iodine-stained gelatinized starch reveal a 

coarse, but uniform exterior (Figure 4D), which may allow ultrasound to transmit faster than 

cells containing free water. 

Correlations Between Instron Universal Testing Machine Textural Measurements and 

Ultrasonic Velocity. Almost all correlations observed between Instron Universal Testing 

Machine textural measurements of fruit stored for 5 or 10 weeks and ultrasonic velocity of 

fruit stored 7.5 weeks were for raw fruit and fruit steamed for 10 min. Only correlations 

observed for fruit steamed 20 min was fracturability of fruit, stored for 5 weeks and steamed 

20 min (r = -0.64, P = 0.03) and stored for 10 weeks and steamed 20 min (r = -0.69, P = 

0.009). Fruit stored for 5 weeks, raw or steamed for 2 or 5 min, was correlated to ultrasonic 

velocity of raw fruit for hardness (r = 0.82, 0.84 and 0.68; P = < 0.0001, 0.0005 and 0.01 

respectively) and springiness (r = -0.68, -0.67 and -0.66; P = 0.01, 0.02 and 0.02 

respectively). Fracturability of fruit stored 5 weeks, raw or steamed for 2 min, was correlated 

to ultrasonic velocity of raw fruit (r = 0.81 and 0.84; P = 0.001 and 0.0005 respectively). 

Ultrasonic velocity of raw fruit, was correlated to the fruit textural parameters, stored 10 

weeks and raw or steamed for 2 min, of hardness (r = 0.71 and 0.80; P = 0.009 and 0.0002 

respectively), fracturability (r = 0.81 and 0.76; P = 0.0001 and 0.004 respectively) and 

springiness (r = -0.72 and -0.76; P = 0.008 and 0.004 respectively). Springiness of fruit, 

stored 5 or 10 weeks and steamed 20 min was also correlated to ultrasonic velocity of raw 

fruit (r = -0.64 and -0.61; P = 0.03 and 0.04 respectively). 
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Ultrasonic velocity of fruit steamed 10 min had the most correlations with Instron 

Universal Testing Machine textural measurements. Ultrasonic velocity of fruit steamed 10 

min was correlated to hardness of fruit raw and steamed 2,10, or 15 min that was stored for 5 

(r = 0.72, 0.68, -0.58 and -0.56; P = 0.008, 0.01, 0.05 and 0.05 respectively) and 10 weeks (r 

= 0.68, 0.59, -0.71, -0.60; P = 0.01, 0.04, 0.009 and 0.04 respectively). Fracturability of 

fruit, stored 5 weeks and raw or steamed 2 min, was correlated to ultrasonic velocity of fruit 

steamed 10 min (r = 0.70 and 0.56; P = 0.01 and 0.05 respectively). Fruit stored 10 weeks 

and raw or steamed for 5, 15, or 20 min, had fracturability correlated to ultrasonic velocity of 

fruit steamed 10 min (r = 0.57, -0.67, -0.60 and -0.64; P = 0.05, 0.02, 0.04 and 0.03 

respectively). Ultrasonic velocity of fruit steamed 10 min was correlated to springiness of 

fruit steamed 10, 15 or 20 min that was stored for 5 (r = -0.75, -0.75 and -0.63; P = 0.005, 

0.005 and 0.03 respectively) or 10 weeks (r = -0.64, -0.74 and -0.64; P = 0.03, 0.006 and 

0.03 respectively). Springiness of raw fruit that was stored 10 weeks was also correlated to 

ultrasonic velocity of fruit steamed 10 min (r = -0.57, P = 0.05). 

Highly positive correlation was previously reported between compressive Young's 

modulus and ultrasonic velocity of boiled carrots (8). This finding is interesting compared 

with our findings since we found significant correlations between hardness of squash fruit 

and ultrasonic velocity but whether correlation was positive or negative depended on cooking 

time. Hardness of squash fruit raw or steamed for 2 or 5 min was positively correlated to 

ultrasonic velocity, but hardness of fruit steamed for 15 or 20 min was negatively correlated 

to ultrasonic velocity. 

Correlations Between Starch Characteristics and Ultrasonic Velocity. Correlations were 

made between ultrasonic velocity measured from fruit stored 7.5 weeks and characteristics of 
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starch extracted from different fruit, that were stored 5 or 10 weeks, but grown in same 

completely randomized block research plot. Majority of correlations observed between 

ultrasonic velocity and starch characteristics were for fruit steamed for 10 min. Ultrasonic 

velocity through raw fruit was correlated to weight-average amylopectin molecular weight 

(Mw) and z-average amylopectin molecular weight (Mz) of fruit stored 5 weeks (r = -0.73 and 

-0.77; P = 0.04 and 0.02 respectively). Squash steamed for 20 min also had ultrasonic 

velocity correlated to Mw of fruit stored 5 weeks (r - -0.69, P ~ 0.05) and percent starch 

crystallinity for fruit stored 5 weeks (r = 0.79, P = 0.05). Peak viscosity, trough and final 

viscosity pasting properties of starch from fruit after 5 weeks storage were correlated to 

ultrasonic velocity (r = 0.82, 0.85 and 0.79; P = 0.04, 0.03 and 0.05 respectively). 

Starch content of fruit stored 5 or 10 weeks was correlated to ultrasonic velocity of 

fruit steamed 10 min (r = 0.84 and 0.74; P = 0.0003 and 0.006 respectively), confirming 

microscopic observations. Water content of same fruit was correlated to ultrasonic velocity 

of fruit steamed 10 min (r = -0.86 and -0.77; P = < 0.0001 and 0.0008 respectively). Water 

content has been previously reported to be positively correlated to ultrasonic velocity of raw 

avocado (26), apple and potato (27). Dry matter content was previously reported to be 

negatively correlated to ultrasonic velocity in boiled carrots (8). This finding contradicts our 

results as squash with greater starch content, and resulting dry matter (Chapter 2), had faster 

ultrasonic velocity. However, carrots do not have starch granules present and after boiling 

for 15 min, a high degree of cell wall integrity remained in the carrots. Studies using the 

high-starch accumulating parsnip, belonging to same plant family as carrots (Umbelliferae), 

could be useful in determining if starch plays a role in ultrasonic velocity measurements and 

textural attributes of vegetables. Ultrasonic velocity, of fruit steamed 10 min, was correlated 
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to starch thermal properties, onset and peak gelatinization temperature (T0 and Tp), and 

change in enthalpy of gelatinization (AH) from fruit stored 10 weeks (r = -0.88, -0.79 and 

0.89; P = 0.02, 0.05 and 0.02 respectively). Ultrasonic velocity was correlated to 

polydispersity, based on Mw and Mz (polyMw and polyMz) of amylopectins from squash 

cultivar fruit after 5 (r = -0.71 and -0.80; P = 0.05 and 0.01 respectively) and 10 weeks 

storage (r = -0.98 and -0.99; P = 0.0005 and 0.0002 respectively). Number-average 

amylopectin molecular weight (Mn) and Mz of fruit stored 10 weeks was correlated to 

ultrasonic velocity (r = -0.79; P = 0.05 for both). Gyration radii of amylopectin, based on 

Mn, from fruit stored 10 weeks, was correlated to ultrasonic velocity (r = 0.90, P = 0.01). 

Similar to fruit steamed 20 min, crystallinity of fruit stored 5 weeks was correlated to 

ultrasonic velocity of fruit steamed 10 min (r = 0.93, P = 0.008). Proportion of long 

amylopectin chains (DP > 26) from fruit stored 10 weeks, measured using high-performance 

size-exclusion chromatography, was correlated to ultrasonic velocity of fruit steamed 10 min 

(r = -0.82, P = 0.04). Absolute amylose content of fruit stored 5 weeks and apparent amylose 

content of fruit stored 10 weeks were both correlated to ultrasonic velocity of fruit steamed 

10 min (r = 0.83 and 0.80; P = 0.004 and 0.03 respectively). 

Conclusions. Ultrasound has been demonstrated as a potential nondestructive tool for the 

evaluation of squash fruit texture. Ultrasound velocity was frequently slower than air for raw 

fruit, and velocity increased dramatically upon cooking. High-starch squash cultivars had the 

fastest ultrasonic velocity after 10 min steaming and this coincided with the presence of large 

aggregates of gelatinized starch that were not present in the low-starch cultivars which had 

slower ultrasonic velocity. All cultivars softened substantially during 20 min steaming, but 

light micrographs showed some cultivars had cell wall rupturing during cooking, while 
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others had cell walls still intact. Some cultivars lacked any presence of starch yet all 

cultivars had significant changes in textural attributes during cooking. Ultrasonic 

transmission studies and light micrographs, along with previous studies (Chapter 2, Chapter 

4) indicate that starch structure, starch functionality and cell walls contribute to the texture of 

raw and cooked squash at harvest and during storage, but an additional factor, possibly turgor 

pressure, is also playing a role in determining squash texture. 
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Table 1 

Ultrasonic velocity (m s"1) transmitted through raw and cooked winter squash fruit flesh*. 

Cooking Time (min) 
Cultivar 0# 10# 20 

Big Max 193c 434" 2712 
Cha Cha 296*k 1829ab 2795 
Delica 329ab 1758ab 2740 
Hyvita 218bc 1562abc 2107 
Kurijiman 356" 2065a 2713 
Lakota 362" 1345abc 1949 
Rouge Vif D'Etampes 265abc 915abc 2421 
Sweet Mama 317ab 1996a 2684 
Warren Scarlet 296abc 1308abc 2067 
Whangaparoa Crown 266abc 854abc 1966 
Yogorou 279abc 696bc 2068 
Zapallo Macre 280abc 356= 2628 

P = 0.0006* P = 0.0002 P = 0.47 

* Velocity measurements are from three replicates for all cultivars. 
* Values with different letters denote differences at the 5% level of significance for each 
comparison between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between 
cultivars in the respective column. 
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Figure 1. Representative light micrographs of Big Max stained with HF (A), Cha Cha 
stained with HF (B), Delica stained with HF (C), Hyvita stained with HS (D), Kurijiman 
stained with HS (E) and Lakota stained with SC (F) raw winter squash fruit flesh stored for 
7.5 weeks. Scale bar =100 pm and magnification is 33x for all images. 
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Figure 1. continued. Representative light micrographs of Rouge Vif D'Etampes stained with 
HF (G), Sweet Mama stained with HF (H), Warren Scarlet stained with HF (I), Whangaparoa 
Crown stained with SC (J), Yogorou stained with HS (K) and Zapallo Macre stained with SC 
(L) raw squash fruit flesh stored for 7.5 weeks. Scale bar = 100 jam, and magnification is 
33x for all images. 
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Figure 2. Representative light micrographs of Big Max stained with SC (A), Cha Cha 
stained with HS (B), Delica stained with SC (C), Hyvita stained with HS (D), Kurijiman 
stained with HF (E) and Lakota stained with SC (F) winter squash fruit flesh steamed for 10 
minutes. Scale bar = 100 gm, and magnification is 33x for all images. 



www.manaraa.com

348 

Figure 2. continued. Representative light micrographs of Rouge Vif D'Etampes stained with 
SC (G), Sweet Mama stained with SC (H), Warren Scarlet stained with HF (I), Whangaparoa 
Crown stained with SC (J), Yogorou stained with HF (K) and Zapallo Macre stained with HS 
(L) squash fruit steamed for 10 minutes. Scale bar = 100 jxm. 
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Figure 3. Representative light micrographs of Big Max stained with SC (A), Cha Cha 
stained with HS (B), Delica stained with SC (C), Hyvita stained with SC (D), Kurijiman 
stained with SC (E) and Lakota stained with HF (F) winter squash fruit flesh steamed for 20 
minutes. Scale bar = 100 gm, and magnification is 33x for all images. 
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Figure 3. continued. Representative light micrographs of Rouge Vif D'Etampes stained with 
HF (G), Sweet Mama stained with SC (H), Warren Scarlet stained with HF (I), Whangaparoa 
Crown stained with SC (J), Yogorou stained with HF (K) and Zapallo Macre stained with SC 
(L) squash fruit steamed for 20 minutes. Scale bar = 100 |xm. 
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Figure 4. Representative light micrographs, stained with iodine/potassium iodide, of Cha 
Cha steamed for 0 (A), 10 (B) and 20 (C) minutes at 33x magnification. Representative light 
micrograph of buttercup squash after 10 minutes steaming is shown for iodine stained 
Kurijiman section at 134x magnification (D). Scale bar = 100 am. 
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Figure 5. Representative light micrographs, stained with ruthenium red, of the winter squash 
cultivars Cha Cha steamed for 0 (A), 10 (B) and 20 (C) minutes, and Yogorou steamed for 0 
(D), 10 (E), and 20 (F) minutes. Scale bar = 100 (xm and magnification is 33x for all images. 
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CHAPTER 7. SEASONAL VARIATION IN WINTER SQUASH (Cucurbita maxima 
D.) FRUIT. I. VARIATION IN STARCH STRUCTURAL AND FUNCTIONAL 

PROPERTIES. 

A paper to be submitted to New Zealand Journal of Crop and Horticultural Science 

David G. Stevenson 
Jay-lin Jane 
Department of Food Science & Human Nutrition 
2312 Food Sciences Building 
Iowa State University 
Ames, Iowa, 50011 
USA 

Abstract Nine winter squash cultivars were grown for 2, 3 or 4 years at Ames, Iowa, and 

starch was extracted from fruit at harvest. Seasonal variation in starch structural and 

functional characteristics was investigated. There was large seasonal variation in starch 

content of fruit. All starch structural properties, including amylose content, average 

amylopectin molecular weight, amylopectin polydispersity, amylopectin gyration radius and 

amylopectin branch chain-length distribution varied between seasons. Starch functional 

properties, including gelatinisation temperatures and enthalpy change of native starch, 

thermal transition temperatures, and enthalpy of retrograded starch and percent 

rétrogradation; pasting properties such as peak viscosity, breakdown, final viscosity, setback 

and pasting temperature; gel firmness and stickiness, all varied between seasons. Only 

differences that could be attributed to climatic effects are starch content, amylose content, 

amylopectin molecular weight and amylopectin branch chain-length distribution which 

showed consistent variation for all cultivars between seasons. 

Keywords winter squash; buttercup squash, Cucurbita maxima-, starch; amylose; 

amylopectin; seasonal variation; 
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INTRODUCTION 

Winter squash are an important export crop for many countries, including New Zealand. 

Quality of winter squash is important in gaining access to lucrative markets. Knowledge of 

squash fruit composition can help determine factors important for improving quality. Some 

fruit from squash cultivars have been previously shown to contain moderate to high levels of 

starch (Hurst et al. 1995, Irving et al. 1997, Sugimoto et al. 1998, Corrigan et al. 2001, 

Curamasamy et al. 2002, Kang et al. 2002, Chapter 2). Understanding the starch structural 

and functional properties can provide information about the determinants of texture in winter 

squash fruit (Chapter 5). 

Seasonal variation in squash fruit composition can adversely influence texture and 

other quality attributes. Therefore, to better manage the dispatch of high quality squash to 

export markets, knowledge on seasonal variation in starch content, structure and function is 

important. Currently there is no information on how starch characteristics in squash fruit 

vary between growing seasons. 

Despite the extensive research on starch, publications on seasonal variation of starch 

structural and functional properties are not common for any crop, and typically report 

variation of just two seasons. Additionally these publications on seasonal variation have 

focused on just a few crops, particularly wheat (Tester et al. 1995, Lin & Czuchajowska 

1997, Araki et al. 1999), maize (Campbell et al. 1995), rice (Ayers et al. 1997), cassava 

(Defloor et al. 1995) and sweet potatoes (Noda et al. 1998). In our study, we present results 
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of seasonal variation in starch structural and functional properties grown four seasons in 

Iowa. 

MATERIALS AND METHODS 

Climatic data 

Daily mean, maximum and minimum temperatures for Ames between the primary squash 

cultivation period of May 20 to September 30, from 1998 to 2001 was obtained from 

Wunderground.com historical weather database. 

Plant material 

In total, nine winter squash (Cucurbita maxima D.) cultivars were grown for at least two 

seasons between 1998 and 2001 in Iowa. Squash cultivars studied were four buttercups (Cha 

Cha, Delica, Kurijiman and Sweet Mama), one cross between a buttercup, Green Delicious, 

and a non-buttercup, Table Queen (Hyvita), one Halloween-type (Rouge Vif D'Etampes), 

one Hubbard-type (Warren Scarlet, also known as Red Warren), one Crown-type 

(Whangaparoa Crown) and one Native American Indian squash (Lakota). In 1998, winter 

squash cultivars Delica, Kurijiman, Lakota, Sweet Mama, Warren Scarlet and Whangaparoa 

Crown were grown as part of seven cultivars in a completely randomized block at an Iowa 

State University farm site that is 1.7 miles south of Ames, Iowa (geographical location 41° 

58' 57.5" N, 93° 38' 22.9"). In 1999, at an adjacent field, winter squash cultivars Delica, 
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Hyvita, Kurijiman, Lakota, Sweet Mama, Warren Scarlet and Whangaparoa Crown were 

grown as part of eight cultivars in a randomized complete block. Starch of Whangaparoa 

Crown grown in 1999 was not extracted and only water and total starch content are reported 

for this cultivar for the 1999 season. In 2000, on the same field as for 1998, winter squash 

cultivars Cha Cha, Delica, Hyvita, Kurijiman, Lakota, Rouge Vif D'Etampes, Sweet Mama, 

Warren Scarlet and Whangaparoa Crown were grown as part of twelve cultivars in a 

randomized complete block. In 2001, at a pumpkin farm located at Gilbert, Iowa, four miles 

north of Ames, Iowa, winter squash cultivars Cha Cha, Delica, Rouge Vif D'Etampes and 

Sweet Mama were grown as part of eight cultivars in a randomized complete block. In 1998, 

eighteen replicates were planted of each cultivar, in which five replicates were randomly 

selected for all analysis. In subsequent years, three replicates for all squash cultivars were 

planted and analysed. Seeds were purchased for Kurijiman, Warren Scarlet and 

Whangaparoa Crown from Webling and Stewart Ltd., Petone, New Zealand, for Delica from 

Yates New Zealand Ltd., Onehunga, New Zealand, for Sweet Mama from Henry Field Seed 

& Nursery Co., Shenandoah, IA, USA, for Lakota from W. Atlee Burpee & Co., Warminster, 

PA, USA, for Rouge Vif D'Etampes from J.W. Jung Seed Co., Randolph, WI, USA, and for 

Cha Cha from Johnny's Select Seeds Co., Winslow, ME, USA. Hyvita was received as a gift 

from Dr Henry Munger, Department of Plant Breeding, Cornell University, Ithaca, NY, 

USA. Squash fruit maturity was adjudged when stalks became woody (Hawthorne 1990), 

and this stage had been previously shown to have the highest starch content (Irving et al. 

1997). 

Starch isolation and quantification, and water content 
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Starch was extracted from fruit using procedure described previously (Chapter 2). In 1998, 

1999 and 2001, starch was extracted from two fruit per replicate, and in 2000 four fruit per 

replicate were used. Water content of fruit was determined by freeze-drying. Total starch 

content of freeze-dried squash fruit powders, measured in duplicate, was determined using 

total starch assay kit (Megazyme International Ireland Ltd., Wicklow, Ireland), that is 

described in more detail by Stevenson & Jane (Chapter 2). 

Amylopectin molecular weight distribution and gyration radius 

Weight-average molecular weight and z-average gyration radius of amylopectin were 

determined using high-performance size-exclusion chromatography equipped with multi-

angle laser-light scattering and refractive index detectors (HPSEC-MALLS-RI) as described 

previously (Chapter 2). 

Apparent and absolute amylose content 

Apparent and absolute amylose content of starch was determined following the procedure of 

Lu et al. (16). Analysis was based on iodine affinities of defatted whole starch and 

amylopectin fraction described previously using a potentiometric autotitrator (Chapter 2). 

Amylopectin branch chain-length distribution 



www.manaraa.com

358 

Amylopectin branch chain-length distribution was measured using high-performance anion-

exchange chromatography equipped with an amyloglucosidase post-column on-line reactor 

and pulsed amperometric detector. Fractionated amylopectin was debranched with 

isoamlyase as described previously (Chapter 2). 

Starch thermal properties 

Thermal properties of native and retrograded starch were determined using a differential 

scanning calorimeter (DSC-7, Perkin-Elmer, Norwalk, CT) as described previously (Chapter 

2). 

Starch pasting and gel properties 

Starch pasting properties were analysed using a rapid visco-analyser (RVA-4, Newport 

Scientific, Sydney, Australia) as described previously (Chapter 2). Firmness and stickiness 

of squash starch gels after 1 or 7 d storage at 4°C was measured as described previously 

(Chapter 2). 

RESULTS AND DISCUSSION 

Ames seasonal climatic variance 
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Average daily mean, maximum and minimum temperatures and rainfall of about 15-16 day 

periods is shown in Table 1. The 1998 season was characterised by high rainfall in late May 

and June, but a dry late July and early August and warm temperatures late in growing season 

provided good conditions for squash fruit production. The 1999 season was much drier in 

initial months, and temperatures in mid to late July, when flowering was at its fullest, were 

very hot, causing problems for pollination. Late September of 1999 was very cool with one 

frost shortening the growing season. The 2000 season, when all squash cultivars were 

grown, was characterised by a warmer first month of growing season and predominantly 

warmer days later in growing season, resulting in the most productive yields. A frost in late 

September of 2000 shortened the growing season. High-rainfall in late May and associated 

substantially cooler temperatures slowed growth at first, but a hot two-month spell from mid-

June to mid-August, where temperatures were frequently above 30°C, resulted in good 

squash fruit production for 2001 season. Growing season of 2001, like 1998, was not 

curtailed early by frost. 

Water and starch content 

Water and starch content of the squash cultivars grown over four seasons is shown in Table 

2. Buttercup squash had lower water content and higher starch content than other squash 

cultivars. Changes in water content of fruit appeared to be unrelated to the amount of starch 

accumulated. Squash fruit accumulated high levels of starch and is in similar range to the 

50-66% starch content, on dry weight basis, reported by Hurst et al. (1995) for three 

buttercup squash cultivars grown in New Zealand. Squash fruit in the 1999 and 2001 seasons 
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had substantially more starch than fruit grown in 2000. Although starch accumulation during 

squash fruit development has been reported to be fairly progressive, a greater proportion of 

starch is accumulated in the first 20 days after pollination (Irving et al. 1997, Kang et al. 

2002), which typically was the last half of July. The 1999 and 2001 seasons had much 

higher average daily mean, maximum and minimum temperatures during last half of July 

than the 2000 season, which may explain the greater amount of starch accumulated by 

harvest. Wilhelm et al. reports that starch synthase enzymes in cereal grains are down 

regulated when temperature exceeds 25°C, but the overall high levels of starch accumulated 

in squash fruit for all three seasons, suggests starch synthesising enzymes in squash are 

active at much greater temperatures. Significant variation in starch content between different 

years has been reported for wheat (Lin & Czuchajowska 1997). In contrast to our results, no 

difference in starch content was observed for barley grown in two consecutive seasons 

(Oscarsson et al. 1998) and minor differences in starch content has been reported for wheat 

grown in different seasons and soil moisture status (Coles et al. 1997). 

Amylose content 

Seasonal variation in iodine affinity of amylopectin fraction and amylose content of squash 

fruit starches is shown in Table 3. Iodine affinity of amylopectin fraction reflects the 

proportion of amylopectin molecules with sufficiently long enough chain-lengths to complex 

iodine, exhibiting blue colour, and contributes to the apparent amylose content which 

measures iodine affinity of the whole starch. Absolute amylose content subtracts the iodine 

affinity of the amylopectin fraction from that of the whole starch and therefore measures the 
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amylopectin fraction with 1999 and 2000 considerably higher than 1998 and 2001, 

suggesting that amylopectin branch chain-lengths of squash starches are shorter in the 1998 

and 2001 season. Apparent amylose content of squash starch in the last three seasons is high 

relative to most other starches (Jane et al. 1999), and was substantially higher than in 1998. 

Absolute amylose content of all four cultivars grown in 2001 was higher than their respective 

absolute amylose content observed in other seasons. Sugimoto et al. (1998) has shown that 

amylose content of buttercup squash fruit increases the greatest between 15 and 40 days after 

flowering, which generally was the month of August for squash grown in Iowa. Average 

minimum daily temperature in the last half of August of 1998 was warmer than the three 

other seasons, which may have caused a reduction in synthesis of long-chain amylopectin 

molecules that contribute to higher apparent amylose content. Seasonal differences in 

amylose content of squash fruit is in agreement with other studies. Apparent amylose 

content of wheat starch has been shown to increase 5% (i.e. 26 to 31%) when grown at 

temperatures 4°C warmer (Tester et al. 1995), and other studies of starches from 78 wheat 

lines grown in consecutive seasons observed, on average, a 3% difference between seasons in 

apparent amylose content and that allelic differences at Wx-Bl locus, that is influenced by 

environment, causes variation in apparent amylose content (Miura et al. 1994, Araki et al. 

1999). The same Wx gene has been found to contribute to variation of amylose content of 

r i c e  s t a r c h  g r o w n  i n  d i f f e r e n t  e n v i r o n m e n t s  ( A y e r s  e t  a l .  1 9 9 7 ) .  A  h i g h l y  s i g n i f i c a n t  ( P  <  

0.0001) difference between years was reported for winter wheat apparent amylose content 

(Lin & Czuchajowska 1997). Amylose content of potatoes has been reported to be 

significantly influenced by temperature with heated glasshouse grown potatoes having starch 
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with higher amylose content than field-grown potatoes (Cottrell et al. 1995). Another study 

reported no difference in apparent amylose content of sweet potatoes grown in consecutive 

years (Noda et al. 1998). 

Amylopectin molecular weight, polydispersity and gyration radius 

Seasonal variation in amylopectin molecular weight, polydispersity and gyration radius of 

squash starches is shown in Table 4. Differences in weight-average amylopectin molecular 

weight were observed between the seasons but the variation was dependent on cultivar. 

However, no squash grown in 1998 had large amylopectin molecules relative to the other 

seasons. Polydispersity of amylopectin molecules was higher for most squash cultivars in 

1999 season compared with 1998. Polydispersity of all buttercup squash cultivars was not 

similar in any individual season. Gyration radius measures the size of amylopectin 

molecules in respect to their spatial arrangement. Amylopectin gyration radius of squash 

cultivars showed much clearer trend with all cultivars grown in 1999 having wider 

amylopectin molecules compared with squash grown in 1998 and 2000 seasons. Sugimoto et 

al. (1998) reports average amylopectin molecular weight, from buttercup squash starch, 

increases rapidly during the first 22 days after flowering (8 to 9 times), reaching a maximum 

at 26 days after flowering and then sharply declines up to 42 days after flowering (8 to 9 

times) before doubling in average molecular weight in the last 6 days of development prior to 

harvest (48 days after flowering). Based on Sugimoto's results, it is unclear whether the hot 

temperatures experienced in the first 22 days after flowering (late July to early August) in the 

1999 season contributed to the higher molecular weight and gyration radius of amylopectin 
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are critical. If the week prior to harvest is the developmental stage that determines 

amylopectin molecular characteristics, then seasonal variation is expected since harvest date, 

based on stems becoming woody, would have some associated variation with respect to days 

after flowering. There have been no previous reports in the literature about seasonal 

variation in amylopectin molecular weight, polydispersity and gyration radius for any crop. 

Amylopectin branch chain-length distribution 

Seasonal variation in amylopectin branch chain-length distribution of squash starches is 

shown in Table 5 and 6. The proportion of short amylopectin branch chain-lengths (DP 6-

12) was different for some cultivars between seasons but for all cultivars, except Lakota, 

seasonal variation in short chains was small and some cultivars showed almost no variation. 

Proportion of short to intermediate amylopectin branch chain-lengths (DP 13-24) was lower 

for all squash cultivars grown in 2001 compared with 2000 season. Overall, greater 

proportion of DP 13-24 amylopectin branch chain-lengths was observed for starch from 

squash grown in 1998. Intermediate amylopectin branch chain-lengths (DP 25-36) showed 

the opposite trend to DP 13-24 chain-lengths as squash grown in 2001 season had higher 

intermediate chain-lengths than squash grown in 2000, and 1998 season tended to have the 

lowest proportion of intermediate amylopectin branch chain-lengths. Long amylopectin 

branch chain-lengths proportion was higher for starch from squash fruit grown in 2000 

season compared with 2001. Apart from Hyvita that did not differ between 1999 and 2000 

season, all other squash cultivars had higher proportion of long amylopectin branch chain-
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lengths in 1999 season. The high proportion of long amylopectin branch chain-lengths in the 

1999 season, relative to other seasons, is reflected also in the average branch chain-length. 

Since Sugimoto et al. (1998) has shown the largest amylopectin molecules are produced in 

the first 22 days after flowering, the hot temperatures in late July of 1999 may have resulted 

in faster metabolic rates producing amylopectins with larger molecular weights and greater 

proportion of longer chains. However, until an extensive study is conducted on amylopectin 

molecular weight during fruit development, we will not know whether the large decline in 

average amylopectin molecular weight occurring 22-42 days after flowering reported by 

Sugimoto et al. (1998) is due to large amylopectin molecules being degraded or a large 

increase in synthesis of relatively small amylopectin molecules. There has been no previous 

report in literature of variation in amylopectin branch chain-length distribution in different 

growing seasons for any starch. 

Starch thermal properties 

Onset (T0), peak (Tp) and conclusion (Tc) gelatinisation temperature seasonal variation of 

native squash starches is shown in Table 7. Range of gelatinisation temperature (ROG) and 

enthalpy change of gelatinisation (AH) seasonal variation of native squash starches is shown 

in Table 8. Starch from fruit of buttercup squash cultivars had lower T0, Tp and Tc grown in 

1999 season than for other three seasons. Additionally, T0 of squash starches in 2001 season 

was lower than 2000 season, but Tp and Tc only varied for some cultivars. ROG of squash 

starches is very low relative to starches from other botanical sources (Jane et al. 1999). ROG 

of starch from buttercup squash cultivars varied considerably between seasons, particularly 
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for Cha Cha and Sweet Mama. There was no consistent trend among the squash cultivars for 

ROG variation between seasons. Seasonal variation in AH of squash starches was also 

observed for Hyvita, Rouge Vif D'Etampes, Sweet Mama and Warren Scarlet, but not for the 

other cultivars. Variation in thermal properties is unlikely to be attributed to degree of 

crystallinity because variation in gelatinisation temperatures does not correspond with the 

variation in AH. A 3°C increase in temperature has been shown to reduce AH of wheat starch 

from 17 to 13 J/g (Tester et al. 1995), and Cottrell et al. (1995) reported glasshouse grown 

potatoes had starch with lower AH and higher gelatinisation temperatures. Significant 

variation in all gelatinisation parameters except AH of maize starches between seasons has 

been postulated to be due to large differences in growing temperature and rainfall (Campbell 

et al. 1995). Seasonal differences in gelatinisation temperatures and AH of cassava starch 

from many genotypes has been reported and similar to our findings, variation was not 

consistent for each genotype between seasons (Defloor et al. 1995). 

Thermal transition onset (T0R), peak (TPR) and conclusion (TCR) temperature seasonal 

variation of retrograded squash starches is shown in Table 9. Enthalpy change of the thermal 

transition (AHR) and rétrogradation percentage variation across the different seasons is shown 

in Table 10. Similar to native starch, ToR, TCR and AHR of retrograded starch varied for many 

squash cultivars between seasons but the variation was not consistent for each cultivar. TPR 

varied between seasons for Cha Cha, Rouge Vif D'Etampes and Warren Scarlet. 

Whangaparoa Crown retrograded starch did not vary between seasons for any parameter 

measured and only thermal measurement that did vary between seasons was T0 of native 

starch. Percentage rétrogradation of the squash starches showed much greater variation 



www.manaraa.com

366 

between seasons than measurements of gelatinisation temperatures and enthalpy changes, 

and variation was not consistent between seasons for each cultivar. There has been just one 

previous report in literature of seasonal variation of retrograded starch for maize grown over 

two seasons (Campbell et al. 1995). 

Starch pasting properties 

Seasonal variation in the starch pasting properties of peak viscosity, breakdown and final 

viscosity of the squash starches is shown in Table 11, and the pasting properties of setback 

and pasting temperature are shown in Table 12. In the 2001 season, Cha Cha and Delica 

both had higher peak viscosity, breakdown, final viscosity and setback than 2000 season, 

with the complete opposite trend observed for Sweet Mama. Pasting temperature of the three 

buttercup squash starches in 2001 was not different from 2000 season. Variation in peak 

viscosity, breakdown, final viscosity, setback and pasting temperature was observed between 

seasons but differences were not consistent for each cultivar between seasons. Only Hyvita 

and Warren Scarlet showed no seasonal variation in peak viscosity, whereas Cha Cha, Hyvita 

and Kurijiman did not vary in breakdown between seasons. Warren Scarlet was the only 

squash starch paste that did not show any seasonal variation in final viscosity and setback, 

and only Cha Cha and Whangaparoa Crown showed no seasonal effects on starch pasting 

temperature. Viscosity of starch pastes has been reported to vary for barley and wheat grown 

over three seasons (Fastnaught et al. 1996, Udall et al. 1999). 

Gel properties 



www.manaraa.com

367 

Seasonal variation in gel firmness and stickiness of the squash starch gels is shown in Table 

13. Apart from Delica, gel firmness after 1 d storage at 4°C was higher for starch from fruit 

grown in 2000 season than other two seasons, and this trend was not as evident after gels 

were stored for 7 d. Gels were stickier from starches of fruit grown in 1999 than the two 

other seasons, and this trend was also less evident after 7 d storage of gels. After 7 d storage, 

some starch gels showed stickiness of double or triple magnitude higher for starch extracted 

from fruit grown in 1999 season compared to 2000 season. There have been no previous 

reports in the literature of variation in starch gel properties over different growing seasons for 

starches obtained from any botanical source. 
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Table 1 

Climatic data for Ames, Iowa, during the main squash cultivation period, from May 20 to September 30 between 1998 
and 2001. MnT = Average daily mean temperature (°C), MxT = Average daily maximum Temperature (°C), 
MmT = average minimum daily temperature (°C), Rnfl = rainfall (mm) and SolR = average daily solar radiation (langleys). 

May 20- June 1- June 16- July 1- July 16- Aug 1- Aug 16- Sept 1- Sept 16-
31 15 30 15 31 15 31 15 30 

1998 MnT 19.6 16.6 23.4 24.1 23.3 22.2 24.6 21.3 20.1 
1998MxT 24.5 21.7 29.1 29.4 29.1 26.7 29.1 28.5 27.3 
1998MmT 14.5 11.4 17.6 18.9 17.5 17.5 19.7 12.9 13.0 
1998Rnfl 82.9 162.3 123.7 39.9 17.0 18.4 56.2 4.8 19.3 
1998SolR 419 393 547 556 563 448 416 476 365 
1999MnT 18.4 21.5 20.7 23.6 27.3 21.4 21.9 18.1 15.5 
1999MxT 24.8 26.1 25.7 29.4 32.2 26.9 27.4 24.4 23.3 
1999MmT 12.2 16.5 15.4 17.3 22.1 15.5 16.2 11.3 7.6 
1999Rnfl 37.8 131.6 37.3 56.1 86.1 48.5 95.0 38.6 14.7 
1999SolR 569 435 489 583 548 485 424 436 373 
2000MnT 18.9 21.1 20.0 24.3 20.7 23.7 22.4 22.5 16.0 
2000MxT 25.5 26.9 26.2 29.1 26.6 29.7 27.7 30.3 23.7 
2000MmT 11.9 15.3 14.1 19.2 14.5 17.3 17.0 14.7 8.1 
2000Rnfl 36.3 36.3 46.0 30.7 35.8 18.0 13.0 6.9 16.5 
2000SolR 417 513 565 462 533 527 357 451 328 
2001MnT 12.5 19.6 22.5 23.6 25.8 24.3 21.8 18.2 13.9 
2001 MxT 15.5 25.3 29.2 30.0 30.7 29.9 27.2 22.6 20.1 
2001MmT 9.3 13.5 15.5 17.1 20.8 18.3 16.1 13.6 7.7 
2001 Rnfl 78.1 38.1 4.3 11.2 31.5 26.2 17.3 99.3 34.5 
2001 SolR 329 477 622 548 460 515 470 362 333 
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Table 2 

Water and starch content of squash fruit at harvest grown between 1998 and 2001. Values 
after ± represent the standard error of the mean. 

Water content (%) 
Cultivar 1998 1999 2000 2001 
Cha Cha 71.8 ±2.1 80.3 ± 0.8 
Delica 78.8 ± 0.7 77.2 ± 0.6 80.1 ± 1.4 80.3 ± 0.7 
Hyvita 81.4 ±0.4 84.4 ± 0.8 
Kurijiman 73.9 ±0.2 74.1 ±0.1 78.9 ± 1.9 
Lakota 91.2 ±0.2 87.5 ± 0.3 89.5 ± 0.8 
Rouge Vif D'Etampes 94.3 ± 0.3 94.7 ± 0.2 
Sweet Mama 84.1 ± 1.7 78.6 ± 0.4 79.4 ± 0.3 81.3 ±0.6 
Warren Scarlet 92.1 ± 1.3 88.5 ± 0.9 88.9 ± 1.1 
Whangaparoa Crown 93.0 ±0.2 89.9 ± 0.7 91.0 ±0.5 

Starch content (% dry weight)* 
Cultivar 1999 2000 2001 
Cha Cha 61.2 ±8.4 81.9 ± 1.7 
Delica 69.9 ± 6.3 56.7 ±3.8 74.0 ± 3.9 
Hyvita 82.3 ±3.1 54.4 ±4.1 
Kurijiman 76.1 ±0.9 55.2 ± 1.2 
Lakota 31.0 ±4.1 17.6 ±3.5 
Rouge Vif D'Etampes 14.5 ±0.1 50.2 ± 0.4 
Sweet Mama 61.8 ±0.7 52.3 ± 4.7 83.9 ±0.1 
Warren Scarlet 34.7 ± 6.3 17.4 ± 11.2 
Whangaparoa Crown 21.2 ±5.8 14.2 ± 2.6 
Data for 1998 season starch content is omitted due to loss of samples. 
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Table 3 

Seasonal variation in iodine affinity of amylopectin fraction, and the apparent and absolute 
amylose contents of squash starches from fruit at harvest grown between 1998 and 2001. 
Values after ± represent the standard error of the mean. 

Iodine Affinity 
Cultivar 1998 1999 2000 2001 
Cha Cha 3.88 ± 0.04 3.11 ±0.18 
Delica 1.93 ±0.13 4.74 ±0.19 3.89 ± 0.09 2.55 ±0.16 
Hyvita 3.53 ±0.19 3.07 ±0.41 
Kurijiman 2.35 ±0.19 4.22 ± 0.02 2.92 ± 0.29 
Lakota 1.65 ±0.11 3.54 ±0.02 3.84 ±0.15 
Rouge Vif D'Etampes 4.76 ±0.18 2.29 ± 0.04 
Sweet Mama 2.33 ±0.10 4.57 ±0.13 3.51 ±0.05 2.43 ± 0.02 
Warren Scarlet 1.81 ±0.07 4.42 ±0.13 4.05 ± 0.05 
Whangaparoa Crown 1.96 ±0.15 4.42 ± 0.01 3.78 ±0.12 

Apparent Amylose (%) 
Cultivar 1998 1999 2000 2001 
Cha Cha 37.7 ±0.9 41.0 ±0.2 
Delica 27.8 ± 0.8 43.0 ± 0.0 36.5 ± 1.7 40.5 ±0.1 
Hyvita 36.9 ± 0.4 33.7 ± 1.0 
Kurijiman 28.3 ± 0.9 41.1 ±0.8 34.6 ± 0.5 
Lakota 22.2 ±1.1 38.4 ±1.0 32.4 ± 0.6 
Rouge Vif D'Etampes 34.7 ± 1.4 30.4 ± 1.8 
Sweet Mama 24.9 ± 1.4 38.3 ±1.8 38.7 ± 1.2 38.5 ± 0.4 
Warren Scarlet 31.3 ±3.0 39.6 ±0.1 37.0 ±0.5 
Whangaparoa Crown 27.9 ± 0.8 36.0 ±0.3 

Absolute Amylose (%) 
Cultivar 1998 1999 2000 2001 
Cha Cha 18.2 ±0.9 25.3 ± 0.7 
Delica 18.2 ±0.7 19.2 ± 1.0 17.0 ± 1.7 27.7 ± 0.7 
Hyvita 19.1 ±0.5 18.3 ± 1.3 
Kurijiman 16.5 ±0.7 19.9 ±0.8 20.0 ± 1.5 
Lakota 14.0 ±0.7 20.7 ± 1.1 13.1 ±5.4 
Rouge Vif D'Etampes 10.8 ±0.8 18.9 ± 1.6 
Sweet Mama 13.2 ± 1.1 15.3 ±2.4 21.1 ± 1.3 26.3 ± 0.5 
Warren Scarlet 17.9 ±3.3 17.4 ±0.1 16.7 ±3.3 
Whangaparoa Crown 18.0 ± 1.1 17.0 ±0.7 
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Table 4 

Seasonal variation in weight-average molecular weight (Mw), polydispersity and gyration 
radius of squash amylopectin from fruit at harvest grown between 1998 and 2001. Values 
after ± represent the standard error of the mean. 

Cultivar 

Mw (x 108) 

Cultivar 1998 1999 2000 2001 

Cha Cha 3.46 ± 0.26 4.82 ±0.16 
Delica 3.19 ±0.27 4.02 ± 0.22 2.83 ± 0.26 4.22 ± 0.02 
Hyvita 4.49 ± 0.76 4.00 ± 0.33 
Kurijiman 2.68 ± 0.48 4.61 ± 0.27 3.05 ± 1.80 
Lakota 3.68 ± 0.25 6.21 ± 1.84 5.52 ± 1.78 
Rouge Vif D'Etampes 3.48 ±0.19 2.32 ±0.01 
Sweet Mama 3.19 ±0.14 3.82 ±0.10 4.15 ±0.39 3.71 ± 0.02 
Warren Scarlet 3.87 ± 0.89 4.17 ±0.22 3.73 ± 0.38 
Whangaparoa Crown 3.38 ± 0.27 3.88 ± 0.27 

Polydispersity 
Cultivar 1998 1999 2000 2001 
Cha Cha 1.38 ±0.07 1.48 ±0.07 
Delica 1.44 ±0.15 1.83 ±0.14 1.95 ±0.20 2.10 ±0.13 
Hyvita 2.91 ± 0.09 1.51 ±0.10 
Kurijiman 1.81 ±0.40 1.90 ±0.01 1.82 ±0.24 
Lakota 1.21 ±0.09 2.40 ± 0.80 1.82 ±0.30 
Rouge Vif D'Etampes 1.51 ±0.15 2.33 ± 0.00 
Sweet Mama 1.30 ±0.06 2.69 ±0.16 1.43 ±0.14 1.46 ±0.04 
Warren Scarlet 1.35 ±0.08 2.99 ± 0.02 1.54 ±0.10 
Whangaparoa Crown 1.29 ±0.08 1.41 ±0.09 

Gyration Radius (nm) 
Cultivar 1998 1999 2000 2001 
Cha Cha 309 ±5 350 ±2 
Delica 311 ±7 346 ± 10 297 ±5 357 ± 1 
Hyvita 380 ±21 318 ± 6 
Kurijiman 294 ± 13 366 ± 6 299 ± 27 
Lakota 324 ±6 410 ±44 349 ± 28 
Rouge Vif D'Etampes 304 ±3 308 ±0 
Sweet Mama 311 ±3 354 ±5 329 ± 11 320 ± 6 
Warren Scarlet 337 ± 17 363 ±5 317 ± 9 
Whangaparoa Crown 304 ± 10 313 ±5 
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Table 5 

Seasonal variation in short- and intermediate-length amylopectin branch chains of squash 
starches from fruit at harvest grown between 1998 and 2001. Values after ± represent the 
standard error of the mean. 

DP 6-12 
Cultivar 1998 1999 2000 2001 

Cha Cha 14.1 ±0.3 14.5 ± 0.2 
Delica 14.9 ± 0.2 13.7 ±0.5 15.3 ±0.2 14.8 ± 0.3 
Hyvita 16.2 ±0.1 16.1 ±0.3 
Kurijiman 15.6 ±0.2 14.0 ±0.3 15.4 ±0.3 
Lakota 12.6 ±0.4 18.2 ±0.4 15.6 ±0.4 
Rouge Vif D'Etampes 14.9 ±0.1 15.5 ±0.8 
Sweet Mama 15.2 ±0.1 14.4 ± 0.2 14.4 ± 0.2 14.4 ± 0.2 
Warren Scarlet 15.4 ±0.3 14.6 ± 0.2 16.7 ±0.7 
Whangaparoa Crown 15.9 ±0.2 15.9 ±0.3 

DP 13-24 
Cultivar 1998 1999 2000 2001 
Cha Cha 38.4 ±0.3 37.9 ± 0.2 
Delica 40.6 ±0.1 37.7 ± 0.2 39.5 ± 0.3 39.0 ± 0.3 
Hyvita 39.8 ± 0.3 39.9 ±0.7 
Kurijiman 41.0 ±0.2 38.3 ±0.2 40.5 ± 0.2 
Lakota 44.7 ± 0.3 38.6 ± 0.4 39.5 ± 0.9 
Rouge Vif D'Etampes 40.1 ±0.8 37.4 ± 0.7 
Sweet Mama 40.1 ±0.1 38.2 ±0.1 39.5 ±0.1 38.6 ± 0.2 
Warren Scarlet 40.4 ± 0.2 38.7 ±0.3 41.0 ±0.9 
Whangaparoa Crown 41.2 ±0.1 38.2 ± 0.2 

DP 25-36 
Cultivar 1998 1999 2000 2001 
Cha Cha 17.1 ±0.2 18.2 ±0.3 
Delica 14.7 ±0.1 17.0 ±0.3 16.0 ± 0.3 17.8 ±0.2 
Hyvita 17.4 ± 0.2 17.4 ±0.5 
Kurijiman 14.2 ± 0.2 15.2 ±0.4 16.6 ±0.8 
Lakota 16.5 ±0.1 17.0 ±0.3 16.9 ±0.2 
Rouge Vif D'Etampes 17.5 ±0.5 18.7 ±0.3 
Sweet Mama 15.0 ±0.1 15.0 ±0.1 16.5 ±0.3 19.1 ±0.2 
Warren Scarlet 16.0 ±0.2 16.1 ±0.2 16.7 ±0.7 
Whangaparoa Crown 14.6 ±0.1 16.4 ±0.7 
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Table 6 

Seasonal variation in long amylopectin branch chain-lengths and average amylopectin branch 
chain-length of squash starches from fruit at harvest grown between 1998 and 2001. Values 
after ± represent the standard error of the mean. 

DP >37 
Cultivar 1998 1999 2000 2001 
Cha Cha 30.2 ±0.5 28.8 ± 0.4 
Delica 29.3 ± 0.2 31.1 ±0.5 28.9 ± 0.6 27.7 ± 0.5 
Hyvita 25.5 ± 0.3 26.3 ± 0.7 
Kurijiman 28.4 ± 0.3 31.8 ±0.4 27.1 ± 1.1 
Lakota 25.4 ±0.6 29.5 ± 0.2 27.4 ± 0.6 
Rouge Vif D'Etampes 28.0 ± 0.7 26.4 ± 0.3 
Sweet Mama 28.8 ± 0.2 32.0 ± 0.3 29.3 ± 0.2 27.1 ±0.3 
Warren Scarlet 27.1 ±0.3 30.2 ± 0.5 25.6 ± 1.3 
Whangaparoa Crown 27.3 ± 0.2 29.1 ±0.7 

Average Chain-length (DP) 
Cultivar 1998 1999 2000 2001 
Cha Cha 28.8 ± 0.3 28.5 ±0.1 
Delica 28.1 ±0.1 29.4 ± 0.2 28.0 ± 0.3 27.7 ± 0.2 
Hyvita 26.9 ±0.1 26.9 ± 0.3 
Kurijiman 27.4 ± 0.3 29.3 ±0.1 27.3 ± 0.5 
Lakota 27.0 ± 0.2 28.7 ±0.3 27.3 ±0.1 
Rouge Vif D'Etampes 27.1 ±0.6 26.4 ± 0.3 
Sweet Mama 27.9 ±0.1 29.5 ±0.1 28.3 ±0.1 27.8 ± 0.2 
Warren Scarlet 26.9 ± 0.4 28.8 ± 0.4 25.7 ± 0.2 
Whangaparoa Crown 27.2 ± 0.2 28.3 ± 0.3 
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Table 7 

Seasonal variation in gelatinisation temperatures (°C) of native squash starches from fruit at 
harvest grown between 1998 and 2001. Values after ± represent the standard error of the 
mean. 

Onset Gelatinisation Temperature (T0) 
Cultivar 1998 1999 2000 2001 
Cha Cha 64.4 ± 0.4 62.4 ± 0.0 
Delica 63.4 ± 0.4 61.8 ±0.3 63.8 ± 0.2 63.3 ± 0.2 
Hyvita 63.8 ± 0.4 61.3 ±0.1 
Kurijiman 63.5 ± 0.2 61.9 ±0.2 65.0 ± 0.2 
Lakota 62.9 ± 0.3 63.7 ± 0.8 62.9 ±0.1 
Rouge Vif D'Etampes 64.4 ± 0.3 61.3 ±0.1 
Sweet Mama 63.5 ± 0.3 59.5 ±0.1 64.4 ± 0.2 63.3 ± 0.0 
Warren Scarlet 61.7 ±0.4 61.9 ±0.4 61.2 ± 0.4 
Whangaparoa Crown 60.6 ± 0.7 61.8 ±0.2 

Peak Gelatinisation Temperature (Tp) 
Cultivar 1998 1999 2000 2001 
Cha Cha 67.1 ±0.4 66.9 ±0.1 
Delica 66.4 ± 0.3 65.7 ±0.1 67.0 ± 0.2 66.7 ± 0.4 
Hyvita 66.5 ± 0.3 64.2 ± 0.2 
Kurijiman 66.5 ±0.1 65.1 ±0.2 67.7 ±0.1 
Lakota 66.4 ±0.1 67.0 ± 0.0 67.6 ±0.1 
Rouge Vif D'Etampes 67.9 ± 0.2 65.3 ±0.1 
Sweet Mama 66.2 ± 0.3 64.3 ± 0.3 67.5 ± 0.2 66.5 ± 0.0 
Warren Scarlet 65.7 ± 0.3 65.3 ± 0.4 65.8 ± 0.3 
Whangaparoa Crown 64.0 ± 0.7 64.9 ± 0.2 

Conclusion Gelatinisation Temperature (Tc) 
Cultivar 1998 1999 2000 2001 
Cha Cha 70.4 ± 0.4 70.4 ±0.1 
Delica 69.7 ± 0.2 69.2 ±0.1 70.0 ± 0.3 70.4 ± 0.3 
Hyvita 70.0 ± 0.3 67.8 ±0.1 
Kurijiman 69.8 ± 0.2 68.8 ± 0.3 70.7 ±0.1 
Lakota 70.4 ±0.1 71.2 ±0.5 71.8 ±0.2 
Rouge Vif D'Etampes 72.1 ±0.3 70.1 ±0.1 
Sweet Mama 69.8 ± 0.4 69.1 ±0.2 70.8 ± 0.2 69.7 ± 0.0 
Warren Scarlet 70.4 ± 0.4 69.7 ± 0.5 70.2 ± 0.4 
Whangaparoa Crown 67.7 ± 0.7 68.4 ± 0.3 
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Table 8 

Seasonal variation in range of gelatinisation temperature and enthalpy change of 
gelatinisation of native squash starches from fruit at harvest grown between 1998 and 2001. 
Values after ± represent the standard error of the mean. 

Range of Gelatinisation Temperature (°C) 

Cultivar 1998 1999 2000 2001 
Cha Cha 6.0 ±0.1 8.0 ±0.1 
Delica 6.3 ± 0.3 7.4 ± 0.4 6.3 ±0.1 7.1 ±0.1 
Hyvita 6.2 ±0.1 6.5 ±0.1 
Kurijiman 6.2 ± 0.2 6.9 ±0.1 5.7 ±0.1 
Lakota 7.5 ± 0.2 7.4 ± 1.3 8.9 ± 0.2 
Rouge Vif D'Etampes 7.7 ±0.1 8.8 ±0.1 
Sweet Mama 6.3 ± 0.2 9.6 ±0.1 6.4 ±0.1 6.4 ±0.1 
Warren Scarlet 8.6 ±0.3 7.7 ± 0.2 8.9 ± 0.2 
Whangaparoa Crown 7.1 ±0.2 6.7 ± 0.4 

Enthalpy Change of Gelatinisation (J/g) 
Cultivar 1998 1999 2000 2001 
Cha Cha 17.8 ±0.2 16.6 ± 0.3 
Delica 17.3 ±0.4 16.7 ± 0.4 16.5 ±0.2 17.0 ±0.4 
Hyvita 18.2 ±0.3 15.8 ±0.2 
Kurijiman 16.9 ±0.4 16.7 ± 0.2 17.2 ±0.2 
Lakota 16.8 ± 0.2 17.4 ±0.4 17.6 ±0.3 
Rouge Vif D'Etampes 16.3 ± 0.2 17.5 ±0.6 
Sweet Mama 17.4 ±0.4 15.1 ± 1.3 17.7 ±0.3 15.5 ±0.8 
Warren Scarlet 16.4 ± 0.2 17.3 ±0.2 14.8 ±0.3 
Whangaparoa Crown 16.3 ±0.8 16.3 ±0.2 
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Table 9 

Seasonal variation in thermal transition temperatures (°C) of retrograded squash starches 
from fruit at harvest grown between 1998 and 2001. Values after ± represent the standard 
error of the mean. 

Onset Thermal Transition Temperature 
Cultivar 1998 1999 2000 2001 
Cha Cha 37.0 ±0.5 35.6 ±0.7 
Delica 36.3 ± 0.4 37.5 ± 0.0 35.7 ±0.5 36.6 ±0.1 
Hyvita 35.1 ±0.2 36.4 ± 0.5 
Kurijiman 36.6 ± 0.4 37.1 ±0.3 37.5 ± 0.3 
Lakota 35.2 ± 0.6 38.3 ± 0.3 36.8 ± 0.4 
Rouge Vif D'Etampes 37.4 ±0.7 34.3 ± 0.6 
Sweet Mama 35.1 ±0.6 35.7 ± 0.6 36.2 ±0.8 33.8 ± 1.4 
Warren Scarlet 36.0 ± 0.4 35.4 ±0.5 36.4 ± 0.9 
Whangaparoa Crown 35.6 ±0.5 35.6 ± 1.0 

Peak Thermal Transition Temperature 
Cultivar 1998 1999 2000 2001 
Cha Cha 56.3 ± 0.5 53.7 ±0.1 
Delica 54.0 ± 0.9 53.7 ±0.3 53.9 ± 0.4 53.8 ± 0.2 
Hyvita 53.5 ± 0.8 54.1 ±0.2 
Kurijiman 54.5 ± 0.6 53.9 ±3.9 54.5 ± 0.4 
Lakota 53.3 ±0.6 54.9 ±2.1 53.5 ± 0.6 
Rouge Vif D'Etampes 57.3 ± 0.4 53.3 ±0.3 
Sweet Mama 52.4 ± 0.9 55.9 ± 1.8 54.4 ± 0.6 53.7 ±0.1 
Warren Scarlet 52.6 ± 0.5 53.2 ± 0.6 56.6 ± 0.5 
Whangaparoa Crown 53.3 ± 0.6 54.1 ±0.6 

Conclusion Thermal Transition Temperature 
Cultivar 1998 1999 2000 2001 
Cha Cha 65.9 ±0.3 66.2 ± 0.2 
Delica 64.5 ± 0.9 66.3 ±0.1 65.4 ± 0.3 66.7 ± 0.3 
Hyvita 63.9 ±0.1 65.3 ± 0.3 
Kurijiman 64.8 ± 0.2 65.6 ± 0.3 65.4 ± 0.4 
Lakota 65.4 ± 0.3 67.1 ±0.9 65.1 ±0.5 
Rouge Vif D'Etampes 68.5 ± 0.4 68.2 ± 0.3 
Sweet Mama 65.0 ± 0.3 66.3 ± 0.0 65.9 ± 0.3 66.8 ± 0.2 
Warren Scarlet 65.5 ± 0.3 64.0 ±0.1 66.1 ±0.4 
Whangaparoa Crown 65.0 ± 0.2 65.1 ±0.2 
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Table 10 

Seasonal variation in enthalpy change of thermal transition of retrograded starch and percent 
rétrogradation of squash starches from fruit at harvest grown between 1998 and 2001. 
Values after ± represent the standard error of the mean. 

Enthalpy Change of Thermal Transition (J/g) 
Cultivar 1998 1999 2000 2001 
Cha Cha 8.8 ± 0.4 8.6 ± 1.1 
Delica 8.1 ±0.4 7.7 ±0.1 9.2 ± 0.4 8.9 ±0.1 
Hyvita 7.0 ± 0.3 8.1 ±0.3 
Kurijiman 7.8 ± 0.3 6.0 ±0.1 7.5 ± 0.2 
Lakota 8.9 ± 0.4 10.6 ± 2.6 8.3 ± 0.3 
Rouge Vif D'Etampes 9.8 ± 0.6 13.8 ± 1.0 
Sweet Mama 9.5 ± 0.3 7.4 ± 0.4 9.0 ± 0.4 9.9 ± 0.9 
Warren Scarlet 8.8 ± 0.4 7.0 ± 0.4 8.1 ±0.4 
Whangaparoa Crown 8.2 ± 0.6 8.3 ± 0.4 

Percent Rétrogradation 
Cultivar 1998 1999 2000 2001 
Cha Cha 49.2 ± 2.0 51.8 ±6.3 
Delica 46.6 ± 1.6 46.0 ± 1.5 56.2 ± 2.6 52.6 ± 1.2 
Hyvita 39.2 ± 1.7 51.2 ±2.1 
Kurijiman 45.8 ± 1.4 36.4 ±0.1 43.5 ± 1.1 
Lakota 53.3 ± 1.7 61.3 ± 16.5 47.2 ± 1.5 
Rouge Vif D'Etampes 59.9 ± 3.9 79.4 ± 7.7 
Sweet Mama 54.7 ± 1.3 49.8 ±7.1 51.2 ±2.6 65.8 ± 3.2 
Warren Scarlet 53.4 ±3.1 40.6 ± 2.3 55.6 ±3.7 
Whangaparoa Crown 49.8 ± 1.5 51.1 ±2.5 
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Table 11 

Seasonal variation in pasting properties of peak viscosity, breakdown and final viscosity 
(Rapid Viscoanalyser units (RVU)) of squash starches from fruit at harvest grown between 
1998 and 2001. Values after ± represent the standard error of the mean. 

Peak Viscosity (RVU) 
Cultivar 1998 1999 2000 2001 
Cha Cha 224 ±5 264 ± 1 
Delica 175 ±11 221 ±9 179 ± 14 279 ±3 
Hyvita 183 ±1 192 ±9 
Kurijiman 179 ± 15 207 ±3 187 ±8 
Lakota 233  ±8  203 ±0 184 ± 12 
Sweet Mama 206 ± 12 180 ± 1 207 ± 12 197 ±3 
Warren Scarlet 177 ±7 193 ±8 184 ±25 
Whangaparoa Crown 174 ± 10 221 ± 11 

Breakdown (RVU) 
Cultivar 1998 1999 2000 2001 
Cha Cha 64 ±5 66 ± 4 
Delica 52 ± 11 81 ±4 75 ±5 111 ±3 
Hyvita 79 ±9 66 ± 5 
Kurijiman 63 ± 13 78 ±4 71 ±8 
Lakota 89 ±6 83 ± 1 70 ±3 
Sweet Mama 67 ± 12 47 ± 1 54 ±13 42 ±2 
Warren Scarlet 53  ±8  63 ±9 36 ±12 
Whangaparoa Crown 65 ±9 82 ±12 

Final Viscosity (RVU) 
Cultivar 1998 1999 2000 2001 
Cha Cha 268 ± 6 318 ± 5 
Delica 207 ± 24 268 ±6 163 ±20 259 ±0 
Hyvita 190 ±7 218 ± 10 
Kurijiman 195 ±36 228 ±8 191 ±9 
Lakota 244 ±7 219 ± 1 191 ±29 
Sweet Mama 232 ±7 215 ±1 257 ± 13 240 ±3 
Warren Scarlet 218 ± 10 225 ±4 236 ± 40 
Whangaparoa Crown 193 ±9 247 ±4 
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Table 12 

Seasonal variation in pasting properties of setback (Rapid Viscoanalyser units (RVU)) and 
pasting temperature of squash starches from fruit at harvest grown between 1998 and 2001. 
Values after ± represent the standard error of the mean. 

Setback (RVU) 
Cultivar 1998 1999 2000 2001 
Cha Cha 108 ±5 121 ±2 
Delica 84 ±10 129 ± 1 60 ±9 92 ± 1 
Hyvita 86 ± 1 92 ±3 
Kurijiman 79 ± 15 99 ± 1 75 ±4 
Lakota 100 ±5 99 ±0 77 ± 16 
Sweet Mama 93 ±3 82 ±0 104 ±8 86 ±2 
Warren Scarlet 93 ±6 95 ±5 88 ±27 
Whangaparoa Crown 85 ±8 108 ± 1 

Pasting Temperature (°C) 
Cultivar 1998 1999 2000 2001 
Cha Cha 67.7 ± 0.6 67.5 ± 0.2 
Delica 68.8 ± 1.1 64.9 ±0.1 66.1 ±0.7 66.2 ± 0.2 
Hyvita 67.1 ±0.2 66.0 ± 0.7 
Kurijiman 67.8 ± 0.6 64.9 ± 0.2 66.9 ± 0.7 
Lakota 67.2 ±0.1 67.2 ± 0.0 68.6 ± 0.5 
Sweet Mama 68.4 ± 0.7 70.3 ± 0.3 68.0 ± 0.8 67.1 ±0.2 
Warren Scarlet 68.0 ± 0.9 66.0 ± 0.3 73.8 ± 1.5 
Whangaparoa Crown 66.5 ± 0.9 65.9 ± 0.4 



www.manaraa.com

383 

Table 13 
Seasonal variation in firmness and stickiness of squash starch gels after 1 or 7 d storage, in 
which starch was extracted from fruit at harvest grown between 1998 and 2001. Values after 
± represent the standard error of the mean. 

Gel Firmness (g) 1 d 
Cultivar 1999 2000 2001 
Cha Cha 20.0 ±1.1 16.8 ±0.2 
Delica 24.2 ± 0.3 16.1 ±0.5 16.8 ±0.6 
Hyvita 13.4 ±0.3 18.4 ± 1.1 
Kurijiman 16.4 ± 0.2 18.3 ±0.7 
Lakota 13.8 ±0.3 21.7 ± 1.2 
Sweet Mama 18.2 ±0.9 26.7 ± 2.4 12.6 ±0.0 
Warren Scarlet 15.1 ±0.2 16.2 ± 1.0 

Gel Firmness (g) 7 d 
Cultivar 1999 2000 2001 
Cha Cha 27.5 ±2.1 21.3 ±0.2 
Delica 38.9 ± 1.3 20.0 ± 1.6 31.5 ±0.9 
Hyvita 14.7 ± 0.2 25.6 ±2.1 
Kurijiman 25.7 ±0.3 23.2 ± 0.6 
Lakota 17.1 ±0.7 27.5 ± 1.4 
Sweet Mama 23.3 ± 0.4 35.4 ±0.2 15.5 ±0.2 
Warren Scarlet 18.8 ±0.4 25.9 ±0.7 

Gel Stickiness (g/sec) 1 d 
Cultivar 1999 2000 2001 
Cha Cha -9.7 ±1.5 -11.4 ±0.2 
Delica -14.1 ±4.1 -11.5 ±2.0 -3.0 ± 0.3 
Hyvita -9.2 ± 2.9 -9.2 ± 1.7 
Kurijiman -13.7 ±0.2 -12.4 ± 1.0 
Lakota -16.0 ±2.0 -13.3 ±1.6 
Sweet Mama -20.8 ± 0.9 -8.8 ± 1.4 -9.4 ± 0.0 
Warren Scarlet -16.5 ±2.0 -12.7 ± 1.6 

Gel Stickiness (g/sec) 7 d 
Cultivar 1999 2000 2001 
Cha Cha -15.4 ± 1.0 -18.1 ± 1.4 
Delica -12.1 ±8.9 -15.7 ±2.2 -13.2 ± 1.0 
Hyvita -17.2 ±2.8 -11.3 ±0.8 
Kurijiman -16.8 ± 7.4 -18.3 ± 1.1 
Lakota -33.0 ±5.3 -18.6 ± 1.2 
Sweet Mama -39.7 ± 2.6 -11.6 ± 1.3 -15.2 ± 1.6 
Warren Scarlet -20.6 ± 4.2 -13.4 ± 1.2 
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CHAPTER 8. SEASONAL VARIATION IN WINTER SQUASH (iCucurbita maxima 
D.) FRUIT. II. VARIATION IN TEXTURE OF RAW AND COOKED FRUIT. 

A paper to be submitted to New Zealand Journal of Crop and Horticultural Science 

David G. Stevenson 
Jane A. Love 
Jay-lin Jane 
Department of Food Science & Human Nutrition 
2312 Food Sciences Building 
Iowa State University 
Ames, Iowa, 50011 
USA 

Abstract Seven winter squash cultivars were grown in Ames, Iowa for 2 or 3 years and 

textural attributes of hardness, fracturability and springiness of squash fruit were measured 

using an Instron Universal Testing Machine. Squash fruit were steamed for 0, 2, 5, 10, 15 or 

20 min and texture of fruit flesh, with skin excluded, was measured. Hardness, fracturability 

and springiness showed high seasonal variation for all steaming times. Hardness and 

fracturability showed greatest seasonal variation for squash fruit steamed 10 min. 

Springiness of squash fruit exhibited greater seasonal variation when fruit was raw or at short 

cooking durations. After studying climatic conditions, variation in all three textural attributes 

among the seasons could be due to differences in rainfall over the entire growing seasons or 

average daily solar radiation and average daily maximum temperatures at periods during fruit 

development. Results suggest researchers studying texture of squash should consider taking 

measurements over several seasons to account for variation. 

Keywords winter squash; buttercup squash, Cucurbita maxima; texture; seasonal variation; 
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INTRODUCTION 

Texture of buttercup squash is an important attribute influencing consumer preferences in 

markets such as Japan (Harvey & Grant 1991, Nagao et al. 1991). In order to meet consumer 

demands, it is important to gain an understanding of the determinants of winter squash 

texture. Seasonal variation between growing years is one factor that could be influencing the 

textural attributes of winter squash. 

Studies reporting seasonal variation effects on textural attributes are not very 

common. To our knowledge there have been no previous reports on seasonal variation in the 

textural attributes of any squash or pumpkin. For fruit crops, similar firmness of apples 

between two years has been reported (Cliff et al. 1998b), but another study by same author 

reports crispness of apples to differ between two years (Cliff et al. 1998a). Two cultivars of 

pear were also reported to have different flesh firmness between two years (Chen et al. 

1993). Similar firmness during the first 120 d after fruit set was observed for kiwifruit but 

the final 40 d after fruit set, prior to harvest, resulted in differences between two seasons 

(Gonzalez Rodriguez et al. 1993). Seasonal differences in firmness, and differences in 

frequency of sensory panelist's textural descriptors (such as soft, mushy, stringy, smooth and 

mealy) were reported for kiwifruit (Stec et al. 1989). Firmness of strawberries measured 

using sensory panelists and Instron Universal Testing Machine differed among three growing 

seasons (Sims et al. 1997). 

Seasonal differences in textural attributes have also been reported for vegetable crops. 

Seasonal differences in texture of seed, cotyledon and testa of green peas among three 

seasons that spanned six years apart, was reported (Edelenbos et al. 2001). Leaf lettuce 

grown in spring has been rated by sensory panelists to have softer texture than lettuce grown 



www.manaraa.com

386 

in winter (Cuppett et al. 1999), and both green and white asparagus have been reported to 

have greater fibrousness grown in spring compared to summer (Brovelli et al. 1998). 

Flouriness of cooked potatoes has been reported to differ among three seasons (O'Beirne & 

Cassidy 1990), while crispness and firmness of carrots has been reported to increase when 

carrot plants experience higher temperatures and solar radiation (Rosenfeld et al. 1998). 

MATERIALS AND METHODS 

Climatic data 

Daily mean, maximum and minimum temperatures for Ames between the primary squash 

cultivation period of May 20 to September 30, from 1998 to 2000 was obtained from 

Wunderground.com historical weather database and is shown in Chapter 7. 

Plant material 

In total, seven winter squash (Cucurbita maxima D.) cultivars were grown for three seasons, 

except for one cultivar, between 1998 and 2000 in Iowa. Squash cultivars studied were three 

buttercups (Delica, Kurijiman and Sweet Mama), one cross between a buttercup, Green 

Delicious, and a non-buttercup, Table Queen (Hyvita), one Hubbard-type (Warren Scarlet, 

also known as Red Warren), one Crown-type (Whangaparoa Crown) and one Native 

American Indian squash (Lakota). Cultivation, field site location, field experimental planting 

layout design, harvesting, storage and source of seeds has been described previously (Chapter 
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7). The 1998 and 2000 season squash were cultivated on the same field and the 1999 season 

squash were cultivated at an adjacent field. All squash fruit were stored for 5 weeks at 12°C 

prior to textural analysis. 

Texture measurements 

Four fruit, from each replicate for all seven squash cultivars, were randomly selected as 

described previously (Chapter 2). Squash fruit were steamed 0 to 20 minutes as described 

previously (Chapter 4). Texture measurements of raw and cooked fruit flesh, excluding the 

skin, were carried out as described previously (Chapter 4) using the Instron Universal Testing 

Machine (Instron Corp., Canton, MA). Measurements of hardness, fracturability and 

springiness were made by using Series 12 software (Instron Corp., Canton, MA) based on 

calculations described by Szczesniak (1963) and Bourne (1968). 

RESULTS AND DISCUSSION 

Ames seasonal climatic variance 

Climatic conditions in Ames, Iowa during the squash growing seasons from 1998 to 2000 

have been mentioned previously (Chapter 7). 

Hardness of fruit at short duration steaming times 

Hardness of raw squash fruit, and fruit steamed for 2 or 5 min is shown in Table 1 for all 

squash cultivars during each of the three seasons. Raw fruit of Hyvita did not vary in 

hardness between 1999 and 2000 seasons, but all other squash cultivars had at least two 

seasons in which taking into consideration their standard error of the mean, were 

considerably different in hardness. Delica raw fruit exhibited the greatest variation among 

seasons as hardness was not similar in any of the three seasons. Seasonal variation for the 

hardness of squash cultivar raw fruit did not show any consistent trend between seasons 
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making it difficult to attribute any of the variation in texture to the climatic variation over the 

three seasons. 

Squash fruit steamed 2 min has similar trends to raw fruit. Hyvita was once again the 

only cultivar that had no variation in hardness between seasons and Delica was the only 

cultivar to have different hardness for all three seasons. Hardness of squash fruit after 5 min 

resulted in substantial differences in which cultivars varied. Hyvita, like when raw or 

steamed 2 min, had no variation between growing seasons, but Delica also had no significant 

differences in hardness among the three seasons for fruit steamed 5 min. Whangaparoa 

Crown showed no variation between 1998 and 2000 season for hardness of raw fruit and fruit 

steamed 2 min, but had substantial differences after 5 min steaming. 

Hardness of fruit at longer steaming durations 

Seasonal variation in hardness of squash fruit steamed 10, 15 or 20 min for each cultivar is 

shown in Table 2. Large differences between cultivars were observed for the 1998 and 2000 

season for hardness of fruit steamed 10 min, but differences were much less for the 1999 

season. Additionally, some cultivars had large differences in hardness among the three 

seasons. Relative to other cultivars, the buttercup cultivars Delica and Kurijiman, and the 

close genetic relative, Hyvita, had low hardness after fruit were steamed for 10 min for all 

three seasons but differences among seasons were still observed. Lakota, Sweet Mama, Red 

Warren and Whangaparoa Crown all had greater than two-fold magnitude difference among 

growing seasons for fruit steamed 10 min. 

Cultivar differences in hardness of squash fruit steamed 15 min was much less than 

for fruit steamed 10 min, but seasonal variation was still observed for most cultivars. Hyvita 

was the only squash cultivar having no seasonal variation in hardness of fruit steamed 15 
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min, with squash grown in 1998 at least eight times harder than fruit from the 1999 season. 

Lakota and Warren Scarlet also showed at least two-fold magnitude difference in hardness 

among seasons when fruit were steamed 15 min. Overall variation of squash cultivar 

hardness among the three season was reduced after fruit were steamed 20 min with all 

hardness values ranging between 8 and 50 N and standard error of the mean for each cultivar 

was generally low. Despite this, only Lakota did not have any seasonal variation in hardness 

of fruit steamed 20 min. Measurements of squash hardness over the three seasons have 

demonstrated that variation of raw and cooked fruit is substantially large enough that future 

studies investigating the texture of winter squash should consider analysis over more than 

one growing season to obtain values of textural attributes that more accurately reflect the 

typical fruit texture. 

Fracturability of fruit at short duration steaming times 

Seasonal variation in fracturability of raw fruit, and fruit steamed for 2 or 5 min, for all 

squash cultivars is shown in Table 3. Unlike for hardness of raw fruit, fracturability of 

uncooked fruit showed a clear consistent seasonal effect for all squash cultivars. Force 

required to fracture raw fruit grown in the 2000 season was higher for all squash cultivars 

than for the other two seasons. The most obvious seasonal difference between the 2000 

season and the combination of 1998 and 1999 season is rainfall. Rainfall during the growing 

season, from May 20 to September 30, was 525 mm in 1998, 547 mm in 1999, but only 234 

mm in 2000 (Chapter 7). Surprisingly, despite the considerably lower rainfall during the 

entire growing season, solar radiation from Julyl to September 30, when fruit development is 

occurring, was lower for 2000 season. Mean daily solar radiation between July 1 and 
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September 30 in 1998 was 471 langleys, in 1999 was 475 langleys and in 2000 was 443 

langleys (Chapter 7). Higher solar radiation has been reported to result in increased chemical 

composition of carrots (Rosenfeld et al. 1998). We have already established previously that 

starch, the principal storage carbohydrate of winter squash, is highly correlated to the 

hardness of squash fruit (Chapter 5). There were no clear differences in temperature 

throughout the growing season for the three season, but temperatures between August 1 to 15 

were considerably hotter in 2000 than for the other two seasons. Softer leaf lettuce has been 

reported when grown in winter compared to spring (Cuppett et al. 1999). Further research 

would be needed to determine if rainfall, solar radiation or temperatures during fruit 

development are critical in determining the fracturability of raw fruit. 

Fracturability of fruit steamed 2 min did not show the same clear seasonal effect of 

raw fruit, but most cultivars had higher fracturability in the 2000 season. Large differences 

in force required to fracture fruit steamed 2 min was observed for Delica, Kurijiman, Warren 

Scarlet and Whangaparoa Crown. Seasonal variation in fracturability of fruit steamed 5 min 

differed from fruit steamed 2 min. Fracturability of Delica was not different among the three 

seasons for fruit steamed 5 min, but all other cultivars had seasonal variation. Apart from 

Warren Scarlet, all other squash cultivars had lower fracturability of fruit steamed 5 min and 

grown in 1999 season compared with the 1998 season. During the last one and half months 

of fruit development, squash grown in 1998 experienced considerably higher maximum daily 

temperatures (mean of 28.3°C) than squash grown in 1999 season (mean of 25.0°C, Chapter 

7), which may contribute to changes in fruit composition that influence the fracturability of 

fruit during cooking. Increased crispness of carrots grown in growth chambers with elevated 

temperatures has been previously reported (Rosenfeld et al. 1998). Lower temperatures have 
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been reported to result in greater fibrousness of asparagus (Brovelli et al. 1998). Fibrousness 

is a textural attribute of winter squash described by sensory panelists (Corrigan et al. 2001, 

Cumarasamy et al. 2002) but it is difficult to determine if fibres would influence hardness or 

fracturability. 

Fracturability of fruit at longer steaming durations 

Squash cultivar seasonal variation in fracturability of fruit steamed for 10, 15 or 20 min is 

shown in Table 4. Similar to hardness measurements, dramatic seasonal variation in 

fracturability of fruit steamed 10 min was observed. The two buttercup cultivars, Delica and 

Kurijiman, plus the close genetic relative, Hyvita, all had no seasonal variation in 

fracturability of fruit steamed 10 min. However, the remaining buttercup cultivar, Sweet 

Mama, had large seasonal variation with fracturability of fruit steamed for 10 min thirteen 

times higher in 1998 season than in the other two seasons. Lakota and Whangaparoa Crown 

also showed large seasonal variation, with both cultivars requiring at least eight times greater 

force to fracture fruit steamed 10 min and grown in 1998 season compared with 1999 season. 

Once squash fruit was steamed for 15 min, seasonal variation in fracturability was 

greatly reduced compared with fruit steamed for 10 min, but seasonal variation was still 

observed. Similar to fruit steamed 10 min, no seasonal variation was observed for Delica, 

Hyvita and Kurijiman fruit steamed for 15 min. Lakota, Sweet Mama and Whangaparoa 

Crown had greater than two-fold magnitude difference in force required to fracture fruit 

steamed 15 min grown in 1998 compared with 1999 season, and fruit steamed 20 min 

showed similar trend for all three cultivars. Delica and Hyvita fruit steamed for 20 min had 

no seasonal variation in fracturability. Although differences in fracturability of Kurijiman 

and Warren Scarlet steamed for 20 min were small, the differences were significant when 
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taking into consideration their standard error of the mean. Measurements of fracturability 

indicate future studies interested in investigating fracturability of fruit should consider 

reporting this textural attribute from fruit grown more than one season to obtain values that 

reflect typical squash fracturability. 

Springiness of fruit at short steaming duration times 

Seasonal variation in springiness of raw fruit, and fruit steamed 2 or 5 min for the squash 

cultivars is shown in Table 5. Similar to observations of fracturability, raw fruit showed a 

seasonal effect in springiness with all cultivars springier in the 1999 and 2000 seasons 

compared with 1998 season although Warren Scarlet was not significantly different. Delica, 

Hyvita, Kurijiman, Warren Scarlet and Whangaparoa Crown all had very similar springiness 

of raw fruit for the 1999 and 2000 seasons. Since rainfall and solar radiation were similar for 

most of the fruit development duration in 1998 and 1999, and both seasons were 

considerably different from 2000 season, these environmental factors are unlikely to be 

contributing to the lower springiness for squash grown in 1998. Squash grown in 1998 did 

experience warmer average daily maximum temperatures during the last one and a half 

months of fruit development (28.3°C) than 1999 (25.0°C) and 2000 (27.2°C) seasons 

(Chapter 7). In particular average daily maximum temperature between September 15 to 30, 

the later stages of fruit development, was 4°C higher in 1998 than the other two seasons 

(Chapter 7). 

Springiness of fruit steamed 2 min had no variation for all squash cultivars between 

1999 and 2000 seasons, but all cultivars except Warren Scarlet had lower springiness for 

squash grown in 1998. When squash fruit was steamed for 5 min, Hyvita and Whangaparoa 

Crown had variation in springiness between 1999 and 2000 season, but all other cultivars had 
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no variation between these two seasons. Springiness of fruit from all cultivars steamed 5 min 

was lower in 1998 season than the other two seasons. 

Springiness of fruit at longer steaming durations 

Variation in springiness of squash fruit among the three seasons that was steamed for 10,15 

or 20 min for all squash cultivars is shown in Table 6. Compared with the shorter steaming 

durations, changes in seasonal variation for springiness of fruit started to emerge after fruit 

were steamed 10 min. Kurijiman, which was less springy for fruit steamed 0 to 5 min and 

grown in 1998 compared with other seasons, showed no seasonal variation in fruit 

springiness among all three seasons for fruit steamed 10 min. All cultivars except Kurijiman 

had seasonal variation in springiness of fruit steamed 10 min with Lakota and Whangaparoa 

Crown fruit substantially springier grown in 1999 and 2000 compared with 1998 season. 

Lower springiness for the 1998 season observed for squash fruit steamed 10 min or 

less was a trend that was not found for fruit steamed 15 min. Kurijiman, Warren Scarlet and 

Whangaparoa Crown all had no difference in springiness of fruit steamed 15 min for the 

1998 season compared with 1999 season. Kurijiman, Sweet Mama and Warren Scarlet also 

had no variation in springiness of fruit steamed 15 min for the 1998 season compared with 

2000 season. Hyvita, Sweet Mama and Whangaparoa Crown had differences in springiness 

of fruit steamed 15 min between 1999 and 2000 seasons but the trend was not consistent for 

all three cultivars. For fruit steamed 20 min, springiness of Hyvita, Lakota, Warren Scarlet 

and Whangaparoa Crown was very similar between 1999 and 2000 season. Sweet Mama 

was also similar for these two seasons, largely because of a large range in its standard error 

of the mean. Apart from Warren Scarlet which had no variation among the three seasons, 

squash fruit steamed 20 min was less springy for squash cultivar fruit grown in the 1998 
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season, compared with 1999 season, and this may be due to differences in temperature during 

fruit development mentioned for springiness of fruit at the shorter cooking times. 

Our results show that hardness, fracturability and springiness of winter squash fruit 

can vary greatly between growing seasons and this variation in textural attributes is likely to 

be observed throughout the entire cooking process. Therefore, future research on the texture 

of winter squash should seriously consider evaluating texture over at least two seasons to 

account for seasonal variation and obtain textural measurements that more accurately reflect 

the characteristics of individual squash cultivars. 
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Table 1 Seasonal variation in hardness of winter squash fruit raw and steamed for 2 or 5 
min. Values after ± represent the standard error of the mean. 

Hardness (N) raw 
Cultivar 1998 1999 2000 
Delica 536 ±52 825 ±9 943 ± 45 
Hyvita 487 ± 26 454 ± 25 
Kurijiman 773 ± 93 955 ±175 1012 ±52 
Lakota 876 ±15 699 ± 42 769 ± 35 
Sweet Mama 855±162 616 ± 72 730 ± 38 
Warren Scarlet 355 ± 92 477 ± 95 625 ± 47 
Whangaparoa Crown 553 ± 39 404 ± 59 554 ±30 

Hardness (N) steamed 2 min 
Cultivar 1998 1999 2000 
Delica 398 ±16 790 ± 64 850 ± 55 
Hyvita 388 ±36 417 ±25 
Kurijiman 583 ± 37 764±101 873 ± 50 
Lakota 980 ± 71 713 ±36 763 ± 30 
Sweet Mama 823 ±51 476 ±51 640 ± 26 
Warren Scarlet 385 ± 59 357 ± 62 633 ± 55 
Whangaparoa Crown 577 ± 50 398 ± 55 544 ± 63 

Hardness (N) steamed 5 min 
Cultivar 1998 1999 2000 
Delica 331 ±46 364 ± 27 418 ±64 
Hyvita 236 ±15 245 ± 36 
Kurijiman 354 ±39 511 ±55 404 ± 42 
Lakota 807 ± 23 462 ± 89 594 ± 35 
Sweet Mama 674 ±144 383 ± 82 397 ± 46 
Warren Scarlet 335 ±49 298 ± 93 494 ± 63 
Whangaparoa Crown 269 ± 10 305 ± 62 448 ± 42 
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Table 2 Seasonal variation in hardness of winter squash fruit steamed for 10,15 or 20 min. 
Values after ± represent the standard error of the mean. 

Hardness (N) steamed 10 min 
Cultivar 1998 1999 2000 
Delica 23 ±3 46 ±9 57 ±3 
Hyvita 32 ±2 45 ±9 
Kurijiman 39 ±9 46 ± 10 66 ±10 
Lakota 415±138 107 ±37 266 ± 26 
Sweet Mama 427 ± 77 46 ±37 43 ± 6 
Warren Scarlet 49 ± 19 94 ±43 196 ±58 
Whangaparoa Crown 229 ± 50 77 ± 11 423 ± 77 

Hardness (N) steamed 15 min 
Cultivar 1998 1999 2000 
Delica 13 ±1 26 ±3 30 ± 2 
Hyvita 17 ± 1 19 ± 2 
Kurijiman 17 ±3 23 ±5 31 ± 2 
Lakota 82 ±8 30 ±3 73 ±9 
Sweet Mama 38 ±4 16 ±2 22 ±2 
Warren Scarlet 15 ± 4 14 ± 1 43 ±11 
Whangaparoa Crown 192 ± 72 14 ± 1 94 ±31 

Hardness (N) steamed 20 min 
Cultivar 1998 1999 2000 
Delica 10± 1 18 ± 1 23 ±2 
Hyvita 12 ±0 14 ± 1 
Kurijiman 16 ± 2 15 ± 2 23 ±2 
Lakota 23 ±2 22 ±3 25 ±2 
Sweet Mama 21 ±4 11 ±2 15 ± 1 
Warren Scarlet 12 ±2 8 ± 1 19 ± 2 
Whangaparoa Crown 49 ±22 11 ± 1 23 ±3 
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Table 3 Seasonal variation in fracturability of winter squash fruit raw and steamed for 2 or 5 
min. Values after ± represent the standard error of the mean. 

Fracturability (N) raw 
Cultivar 1998 1999 2000 
Delica 425 ± 29 735 ± 24 829 ± 62 
Hyvita 447 ± 18 512 ±25 
Kurijiman 687 ± 69 826±177 898 ± 55 
Lakota 522 ± 19 576 ± 45 806 ± 46 
Sweet Mama 650±107 540 ± 92 852 ±71 
Warren Scarlet 223 ± 63 325 ± 70 693 ±104 
Whangaparoa Crown 397 ± 34 339 ±50 660 ± 60 

Fracturability (N) steamed 2 min 
Cultivar 1998 1999 2000 
Delica 285 ± 20 646 ± 50 635 ± 85 
Hyvita 388 ±36 424 ± 41 
Kurijiman 401 ± 54 728 ± 94 710 ±74 
Lakota 585 ± 12 450 ± 61 821 ± 54 
Sweet Mama 654 ± 97 476 ±51 657 ± 41 
Warren Scarlet 208 ± 50 250 ±19 509 ± 90 
Whangaparoa Crown 373 ± 30 344 ± 41 605 ± 55 

Fracturability (N) steamed 5 min 
Cultivar 1998 1999 2000 
Delica 234 ± 22 212 ±60 194 ±65 
Hyvita 63 ±24 132 ±47 
Kurijiman 310 ± 56 250 ± 95 187 ±55 
Lakota 702 ±2 294 ± 87 641 ± 44 
Sweet Mama 503 ± 96 305 ± 59 204 ± 66 
Warren Scarlet 204 ± 58 247 ± 67 400±108 
Whangaparoa Crown 269 ± 10 175 ± 18 407 ± 56 
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Table 4 Seasonal variation in fracturability of winter squash fruit steamed for 10,15 or 20 
min. Values after ± represent the standard error of the mean. 

Fracturability (N) steamed 10 min 
Cultivar 1998 1999 2000 
Delica 18 ± 2 16 ± 1 15 ± 1 
Hyvita 15 ± 1 15 ± 1 
Kurijiman 22 ±7 19 ± 4 18 ± 2 
Lakota 227 ± 62 18 ± 2 279 ± 76 
Sweet Mama 282 ± 52 14 ±2 17 ± 1 
Warren Scarlet 118 ± 87 49 ±29 87 ±49 
Whangaparoa Crown 229 ± 50 17 ±2 131 ±76 

Fracturability (N) steamed 15 min 
Cultivar 1998 1999 2000 
Delica 8 ± 0 8 ± 2 6 ± 1 
Hyvita 7 ± 1 6 ± 1 
Kurijiman 6 ± 1 5 ± 2 7 ± 1 
Lakota 58 ± 13 14 ±2 42 ±19 
Sweet Mama 29 ±5 4 ± 2 7 ± 1 
Warren Scarlet 10 ± 4 5 ± 1 14 ±5 
Whangaparoa Crown 92 ±38 7 ± 1 17 ± 4 

Fracturability (N) steamed 20 min 
Cultivar 1998 1999 2000 
Delica 4 ± 0 3 ± 0 3 ± 0 
Hyvita 2 ± 1 4 ± 1 
Kurijiman 5 ± 1 3 ± 0 3 ± 1 
Lakota 17 ± 1 9 ± 2 11 ± 1 
Sweet Mama 13 ± 2 3 ± 1 3 ± 1 
Warren Scarlet 5 ± 1 2 ± 0 6 ± 1 
Whangaparoa Crown 37 ± 16 3 ± 1 10 ± 1 
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Table 5 Seasonal variation in springiness of winter squash fruit raw and steamed for 2 or 5 
min. Values after ± represent the standard error of the mean. 

Springiness (mm) raw 
Cultivar 1998 1999 2000 
Delica 11.34 ± 0.18 12.20 ±0.10 12.19 ±0.05 
Hyvita 12.43 ± 0.09 12.41 ± 0.04 
Kurijiman 11.29 ±0.10 11.70 ±0.38 11.71 ±0.15 
Lakota 11.35 ±0.13 11.92 ±0.16 12.32 ± 0.05 
Sweet Mama 11.42 ±0.18 12.38 ± 0.05 12.06 ±0.14 
Warren Scarlet 11.78 ±0.25 11.91 ±0.23 11.98 ±0.15 
Whangaparoa Crown 11.55 ±0.05 12.63 ± 0.07 12.60 ± 0.04 

Springiness (mm) steamed 2 min 
Cultivar 1998 1999 2000 
Delica 11.75 ±0.06 12.25 ±0.11 12.31 ±0.02 
Hyvita 12.58 ±0.01 12.49 ± 0.08 
Kurijiman 11.61 ±0.06 11.92 ±0.22 11.98 ±0.06 
Lakota 10.43 ±0.54 12.39 ± 0.04 12.25 ±0.14 
Sweet Mama 11.43 ±0.23 12.49 ± 0.09 12.33 ±0.10 
Warren Scarlet 11.99 ±0.21 12.06 ± 0.26 12.07 ±0.19 
Whangaparoa Crown 11.55 ±0.09 12.62 ± 0.08 12.56 ±0.05 

Springiness (mm) steamed 5 min 
Cultivar 1998 1999 2000 
Delica 11.87 ± 0.15 12.67 ± 0.05 12.60 ± 0.09 
Hyvita 12.64 ± 0.03 12.95 ± 0.05 
Kurijiman 11.87 ±0.06 12.50 ±0.14 12.32 ±0.10 
Lakota 11.53 ±0.07 12.71 ±0.14 12.70 ± 0.03 
Sweet Mama 11.65 ±0.28 12.78 ±0.12 12.53 ±0.12 
Warren Scarlet 11.84 ±0.17 12.38 ±0.13 12.39 ±0.17 
Whangaparoa Crown 11.79 ±0.09 13.05 ±0.07 12.91 ± 0.06 
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Table 6 Seasonal variation in springiness of winter squash fruit steamed for 10, 15 or 20 
min. Values after ± represent the standard error of the mean. 

Springiness (mm) steamed 10 min 

Cultivar 1998 1999 2000 
Delica 12.22 ±0.10 12.65 ± 0.03 12.48 ± 0.03 
Hyvita 12.62 ± 0.03 12.87 ± 0.03 
Kurijiman 12.17 ±0.18 12.31 ±0.18 12.12 ±0.18 
Lakota 12.38 ±0.01 13.42 ±0.17 13.19 ±0.06 
Sweet Mama 12.32 ±0.13 12.97 ±0.14 12.48 ± 0.03 
Warren Scarlet 12.57 ±0.10 12.94 ± 0.05 12.87 ±0.08 
Whangaparoa Crown 12.32 ± 0.07 13.02 ±0.12 13.27 ±0.05 

Springiness (mm) steamed 15 min 
Cultivar 1998 1999 2000 
Delica 11.83 ±0.00 12.49 ±0.11 12.40 ±0.14 
Hyvita 12.37 ±0.07 12.62 ± 0.05 
Kurijiman 12.25 ±0.15 12.11 ±0.32 12.05 ±0.15 
Lakota 12.16 ±0.08 12.83 ±0.10 12.99 ±0.12 
Sweet Mama 11.97 ±0.08 12.57 ±0.07 12.21 ± 0.02 
Warren Scarlet 12.60 ± 0.08 12.70 ±0.14 12.48 ±0.19 
Whangaparoa Crown 12.50 ±0.04 12.43 ± 0.39 13.14 ±0.05 

Springiness (mm) steamed 20 min 
Cultivar 1998 1999 2000 
Delica 12.17 ±0.00 12.75 ±0.14 12.53 ± 0.23 
Hyvita 12.67 ±0.12 12.77 ±0.05 
Kurijiman 12.42 ± 0.07 12.73 ± 0.09 12.36 ±0.17 
Lakota 12.00 ± 0.24 12.77 ±0.21 12.78 ±0.21 
Sweet Mama 12.32 ±0.16 12.68 ± 0.34 12.43 ± 0.24 
Warren Scarlet 12.51 ±0.10 12.46 ± 0.22 12.46 ± 0.24 
Whangaparoa Crown 12.58 ± 0.05 13.13 ±0.05 13.13 ±0.03 



www.manaraa.com

403 

CHAPTER 9. VARIATION IN AGRONOMIC TRAITS, STARCH STRUCTURAL 
PROPERTIES, STARCH FUNCTIONAL PROPERTIES AND TEXTURAL 

ATTRIBUTES OF Cucurbita maxima D. cv. Zapallo Macre WINTER SQUASH 
FRUIT. 

A paper to be submitted to the Journal of the Science and Food Agriculture 

David G. Stevenson, Jane A. Love and Jay-lin Jane 

Department of Food Science & Human Nutrition, 2312 Food Sciences Building, Iowa State 
University, Ames, Iowa, 50011, USA 

ABSTRACT 
Zapallo Macre squash were found to vary dramatically in fruit size, shape and colour. At 

least eight phenotypes were identified and five were selected for detailed study of their starch 

structural and functional properties, as well as their textural attributes raw and steamed up 

to 20 min. The five phenotypes varied in fruit weight, water content, starch content, apparent 

and absolute amylose content, amylopectin molecular weight, amylopectin polydispersity, 

amylopectin gyration radius and amylopectin branch chain-length distribution. The five 

phenotypes also varied in starch gelatinisation temperatures, starch pasting properties and 

gel properties. Hardness, fracturability and springiness of fruit varied among the 

phenotypes at all cooking times. Commercialisation of the starches in Zapallo Macre fruit 

may be limited due to the high variability in its properties. The large difference in starch 

accumulation between fruit on same plant could make Zapallo Macre a useful model crop to 

study starch biosynthesis. 

Key words: Zapallo Macre, winter squash, pumpkin, Cucurbita maxima, starch structure, 

starch function, texture. 
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INTRODUCTION 

The genus Cucurbita is a great untapped resource of squash and pumpkins which may 

produce fruit with unusual compounds of commercial benefit. Currently, less than half of 

one percent of all squash and pumpkins have had any research conducted (Nayar and More 

1998). However, crops that have received no plant breeding have a propensity for large 

variation in phenotype and composition. The many squash cultivars that are loosely referred 

to as Zapallo have been reported to vary in fruit shape (Lizana and Monardes 1978). 

In this study we investigate in detail the starch structural properties, starch functional 

properties, and textural attributes of raw and cooked squash fruit of Cucurbita maxima D. cv. 

Zapallo Macre phenotypes to evaluate the economic importance of this accession line. 

EXPERIMENTAL 

Plant material 

Cucurbita maxima D. cv. Zapallo Macre seeds were planted along with eleven other winter 

squash cultivars in summer, 2000, at an Iowa State University farm site 1.7 miles south of 

Ames, Iowa (geographical location 41° 58' 57.5" N, 93° 38' 22.9"), in a randomized 

complete block (8.23 m x 3.05 m blocks) with 3 replicates (36 plants/replicate). Normal crop 

husbandry was followed as required. Zapallo Macre, according to USD A Plant Introduction 

database, originates from the Bolivian/Peruvian border. Seeds were obtained from the 

USD A, ARS Plant Genetic Resources Unit, Cornell University, Geneva, NY with the 

accession number being PI 298818. Squash fruit maturity was adjudged when stalks became 

woody (Hawthorne 1990), and this stage had been previously shown to have the highest 

starch content (Irving et al 1997). 
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Starch isolation and quantification, and water content 

Starch was isolated from squash fruit using method reported by Badenhuizen (1964) with 

slight modification (Kasemsuwan et al 1995) and further modification as described 

previously (Chapter 2). Due to the drastic variation in fruit weight, shape and colour, fruit 

were separated into eight categories (types) and two fruit for each of five different types were 

selected for each of three replicates, peeled and deseeded, and used for starch isolation. 

Specific information about the five types selected for starch isolation is mentioned in the 

results section and in Fig 1. Squash fruit was ground through a meat grinder ("The Butcher 

Shop", item#402, Krups North America Inc., Peoria, IL), due to its hardness, and 

immediately blended in 0.3% (w/v) sodium metabisulfite and then filtered through 106 |im 

mesh. Filtrate was washed with 10% toluene in 0.1 M NaCl. Toluene/salt washed starch 

was washed three times with distilled water, twice with ethanol, and then recovered by 

filtration using Whatman No. 4 filter paper. Purified starch cake was dried in a convection 

oven at 35°C for 48 h. Starch yields varied among individual fruit, therefore results 

presented in this study are for the fruit in which sufficient starch was present to conduct 

analysis. Water content of squash fruit, with skins and seeds removed, was determined by 

freeze-drying. Total starch content of freeze-dried squash fruit powders, measured in 

duplicate, was determined using total starch assay kit (Megazyme International Ireland Ltd., 

Wicklow, Ireland), based on AO AC method 996.11, AACC method 76.13 and ICC standard 

method No. 168, in which fruit powders are hydrolyzed with a-amylase and 

amyloglucosidase, and subsequent glucose content determined using glucose oxidase-
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peroxidase. Internal standards of corn starch were added to samples to check quantitation 

and recovery of starch. 

Molecular weight distribution and gyration radius of amylopectin by high-performance 

size-exclusion chromatography (HPSEC) 

Weight-average molecular weight and z-average gyration radius of amylopectin were 

determined using high-performance size-exclusion chromatography equipped with multi-

angle laser-light scattering and refractive index detectors (HPSEC-MALLS-RI). Starch 

samples, duplicate measurements of each replicate for all fruit types, were prepared as 

described by Yoo and Jane (2002a). The HPSEC system consisted of a HP 1050 series 

isocratic pump (Hewlett Packard, Valley Forge, PA), a multi-angle laser-light scattering 

detector (Dawn DSP-F, Wyatt Tech. Co., Santa Barbara, CA) and a HP 1047A refractive 

index detector (Hewlett Packard, Valley Forge, PA). To separate amylopectin from amylose, 

Shodex OH pak KB-G guard column and KB-806 and KB-804 analytical columns (Showa 

Denko K.K., Tokyo, Japan) were used. Operating conditions and data analysis are described 

by Yoo and Jane (2002b), except flow rate was 0.4 mL/min and sample concentration was 

0.8 mg/mL. 

Absolute amylose contents by potentiometric autotitration Absolute amylose content of 

starch was determined following the procedure of Lu et al. (1996). Analysis was based on 

iodine affinities of defatted whole starch and amylopectin fraction using a potentiometric 

autotitrator (702 SM Titrino, Brinkmann Instrument, Westbury, NY). Starch samples were 
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defatted using a 90% dimethyl sulfoxide (DMSO) solution, followed by alcohol 

precipitation. Determination of amylose content was duplicated for each squash fruit type for 

each replicate. 

Amylopectin branch chain-length distribution by high-performance anion-exchange 

chromatography (HPAEC) 

Amylopectin was fractionated by complexing amylose with w-butanol as described by 

Schoch (1942). Amylopectin (2 mg/mL) was defatted in boiling 90% DMSO for 1 h, 

followed by stirring for 24 h and then debranched using isoamylase (EC 3.2.1.68 from 

Pseudomonas amyloderamosa) (EN102, Hayashibara Biochemical Laboratories Inc., 

Okayama, Japan) as described by Jane and Chen (1992). Branch chain-length distribution of 

amylopectin was determined using an HPAEC system (Dionex-300, Sunnyvale, CA) 

equipped with an amyloglucosidase (EC 3.2.1.3, from Rhizopus mold, A-7255, Sigma 

Chemical Co., St Louis, MO) post-column, on-line reactor and a pulsed amperometric 

detector (HPAEC-ENZ-PAD) (Wong and Jane 1997). PA-100 anion exchange analytical 

column (250 x 4 mm, Dionex, Sunnyvale, CA) and a guard column were used for separating 

debranched amylopectin samples. Gradient profile of eluents and operating conditions were 

described previously (McPherson and Jane 1999). Branch chain-length distribution of 

amylopectin was also analyzed to determine extra-long branch-chains by using a HPSEC 

equipped with a RI detector. Operating conditions have been described earlier (McPherson 

and Jane 1999), except flow rate was 0.4 mL/min, analytical column used for analysis was 

Shodex OH pak SB-803HQ (Showa Denko K.K., Tokyo, Japan) and sample concentration 
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was 0.8 mg/mL. HPAEC-ENZ-PAD and HPSEC analysis were duplicated for each replicate 

of all fruit types. 

Starch thermal properties by differential scanning calorimetry (DSC) 

Thermal properties of starch were determined using a differential scanning calorimeter 

(DSC-7, Perkin-Elmer, Norwalk, CT) (Jane et al 1999). Approximately 2 mg of starch was 

weighed in an aluminum pan, mixed with 6 mg of deionized water and sealed. Sample was 

allowed to equilibrate for 2 h and scanned at a rate of 10°C/min over a temperature range of 

10-100°C. An empty pan was used as the reference. Rate of starch rétrogradation was 

determined using the same gelatinized samples, stored at 4°C for 7 d, and analyzed using 

DSC as described previously (White et al 1989). All thermal properties were carried out in 

triplicate for each replicate of each fruit type. 

Starch pasting properties by Rapid Visco-Analyser (RVA) and gel properties. Starch 

pasting properties were analyzed using a Rapid Visco-Analyser (RVA-4, Newport Scientific, 

Sydney, Australia) (Jane et al 1999). Starch suspension (8%, w/w), in duplicate for each 

replicate of each fruit type was prepared by weighing starch (2.24 g, dry starch basis (dsb)) 

into a RVA canister and making up the total weight to 28 g with distilled water. Starch 

suspension was equilibrated at 30°C for 1 min, heated at a rate of 6.0°C/min to 95°C, 

maintained at that temperature for 5.5 min, and then cooled to 50°C at a rate of 6.0°C/min. 

Constant paddle rotating speed (160 rpm) was used throughout entire analysis. Immediately 

after the completion of the RVA sample run, the spindle was removed, and the canister was 

wrapped in several layers of Saran® wrap, to minimize dehydration, and placed in a 

refrigerator at 4°C. After 1 or 7 d, canisters were removed from the refrigerator, equilibrated 

to room temperature, and gel firmness and stickiness were measured using a Stable Micro 
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Systems TAXT2/ Texture Analyzer (Texture Technologies Corp., Scarsdale, NY) equipped 

with Texture Expert for Windows software (v 1.22). Each gel was measured five times by 

using a 4 mm diameter cylindrical stainless steel punch probe (TA54). Pretest speed was 2.0 

mm/s, and gels were compressed at a test speed of 0.9 mm/s and a penetration test distance of 

7.5 mm. Peak force of the curve was reported as the firmness of gels and stickiness of gels 

was defined as the negative load portion of the curve as described previously (Takahashi and 

Seib 1988). 

Steaming of squash fruit and texture analysis. Two fruit, from each of the three replicates 

for all five Zapallo Macre fruit types, were randomly selected as described previously 

(Chapter 2). All fruit skins were marked into quarters, and one quarter was randomly 

selected for texture analysis. From this quarter, six 3-cm wide at the equator, longitudinal 

segments were used for texture analysis. Depending on fruit size, allocation of segments for 

texture may be greater than one quarter of the fruit's circumference. Therefore, 

approximately two-thirds to three-quarters was randomly allocated for isolation of starch and 

the remainder for textural analysis, and the groundspot (part of squash fruit with skin 

discoloration due to contact with ground) was not excluded from the textural analysis. 

Squash fruit longitudinal segments, with skins remaining, were randomly selected to be 

steamed in a 10-cup size rice steamer (Zojirushi America Corporation, Commerce, CA, 

model NHS 18) for 0, 2, 5, 10, 15 or 20 min. The plane of the squash fruit skin was 

perpendicular to the water surface, so that the pieces of fruit did not impede heat flow. After 

each segment was steamed for its specified time, a 20 mm diameter apple corer (Oxo brand, 

BASF Corp., Mount Olive, NJ) with a recessed cutting edge, preventing further compression, 

was used to immediately remove a fruit cylinder, cut from the direction of seed cavity to 
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skin. The fruit cylinder was then placed in a metal cylinder with cut grooves 12 mm apart, 

allowing a sliced fruit cylinder to have flat surfaces with height of 12 mm and width of 20 

mm, and skin excluded. Sliced fruit cylinders were placed on the base plate of the Instron 

Universal Testing Machine (Instron Corp., Canton, MA) with the side closest to skin against 

the base plate. The texture profile analysis was started exactly 40 seconds after removal of 

squash fruit from the steamer. Texture profile analysis of squash cylinders involved a two-

cycle compression, with 75% compression of their original height, using an Instron Universal 

Testing Machine. Compression, using the 57 mm compression anvil (Instron part 2830-009), 

was at a crosshead speed of 30 mm/min. Measurements of hardness, fracturability and 

springiness were made by using Series 12 software (Instron Corp., Canton, MA) based on 

calculations described by Szczesniak (1963) and Bourne (1968). Hardness was defined as 

the maximum force of the first compression cycle that was not associated with the first 

fracture, unless the sample experienced first fracture at end of the first compression. 

Fracturability is the force at which material fractures in the first peak (compression force 

decreases). Springiness is the height that food recovers during the time that elapses between 

end of the first compression peak and start of the second compression peak. 

RESULTS 

Agronomic trait differences 

Zapallo Macre seeds received from the Plant Introduction Station at USD A, Geneva, NY, all 

appeared to be identical in colour and size and although not measured, we suspect there was 

little variation in seed weight. Zapallo Macre accession line was reported by the USD A to 

have 100% germination and our observations of over 75 seeds confirm this finding. All 

Zapallo Macre squash plants growing in field appeared to have similar leaf morphology, 
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vining tendencies and flower morphology. Therefore prior to fruit development, no 

indication was evident that the fruit would vary drastically in phenotype. At harvest, we 

observed at least eight distinctive types of fruit based on startling differences in fruit size, 

shape and colour, in which some of this diversity is illustrated in Fig 1. Five of these eight 

types were selected for studies of their starch structure, starch functional properties and fruit 

textural attributes because there was greater occurrence of these Zapallo Macre fruit types. 

Descriptions of the five types are: Type I = very large, oval, grey to white skin with unusual 

fluorescent-lime green/yellow internal flesh; Type II = large, round to oval, variegated green 

skin fruit with bright yellow internal flesh; Type III = small to medium size, round, ribbed, 

grey-skin fruit with bright orange internal flesh; Type IV = small, oval, variegated 

orange/green-skin fruit with bright orange/yellow internal flesh; Type V = large, oblong, pink 

skin fruit with yellow/orange internal flesh. Illustration of the fruit interior for all five 

Zapallo Macre types selected is shown in Fig 2a-c. Average fruit weight for the five Zapallo 

Macre types is shown in Fig 1. Type I was significantly heavier than all other four types. 

Although we could not be absolutely certain, from the best that we could ascertain following 

individual vines, the lightest fruit (Type IV) were found on the same plants that produced the 

heaviest fruit (Type I). Type IV fruit, based on standard error of the mean, were 

considerably lighter than Type I and V. 

Water and starch content 

Water and starch content (dry weight basis) of Zapallo Macre squash fruit is shown in Fig 1. 

Type IV fruit had the highest starch content and lowest water content of the five Zapallo 

Macre fruit types and based on standard error of the means, appeared to be different from the 

four other types. Type II had lower water content than Type I. All five Zapallo Macre fruit 



www.manaraa.com

412 

types starch content was different from each other based on their standard error of the mean. 

Dramatic differences in starch content were observed, with Type IV squash fruit having over 

five times greater starch content than Type V. When considering all eight types found, even 

greater differences in starch content were observed because two of the three fruit types not 

selected for further study did not accumulate any starch. These fruit that lacked any starch 

accumulation were found on the same plants that had fruit with greater than 40% of their dry 

matter as starch. 

Amylose content 

The iodine affinities and amylose contents of Zapallo Macre fruit are shown in Table 2. 

Type IV had higher iodine affinity of the whole starch and the associated apparent amylose 

content than Type II, III and V. Absolute amylose content was similar but Type IV was 

lower than Type I and V. 

Amylopectin molecular size, polydispersity and gyration radius 

Amylopectin molecular size, polydispersity and gyration radius for the Zapallo Macre squash 

fruit type starches are shown in Table 3. Type I and II starch had amylopectin with lower 

weight-average molecular weight than Type III, IV and V. Amylopectin polydispersity was 

higher for Type II than all four other types. Type IV starch exhibited extremely low 

amylopectin polydispersity and was lower than the four other types. Differences were also 

observed in amylopectin gyration radius among the starches from the five Zapallo Macre 

fruit types, with Type III amylopectin molecules wider than all four other types. Type I 

amylopectin molecules were narrower than all four other types. 

Amylopectin branch chain-length distribution 
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Amylopectin branch chain-length distribution for starches from the five Zapallo Macre fruit 

types is shown in Table 4. Type V fruit starch had lower average amylopectin branch chain-

length than Type II and IV. Type II fruit starch, which had the longest average amylopectin 

branch chain-length, had lower proportion of very short chains (DP 6-9) than Type I and V. 

Short amylopectin branch chain-lengths (DP 6-12) were in higher proportion for Type I and 

V starches than for the other Zapallo Macre fruit-type starches. Type V fruit starch had 

considerably higher proportion of intermediate amylopectin branch chain-lengths (DP 13-24) 

and considerably lower proportion of long amylopectin branch chain-lengths (DP 25-36) than 

all four other fruit-type starches. Type V fruit starch had lower proportion of very long 

amylopectin branch chain-lengths (DP > 37) than Type II and IV. 

Starch thermal properties 

Gelatinisation temperatures and enthalpy change of gelatinisation of the different Zapallo 

Macre type fruit starches are shown in Table 5. Onset gelatinisation temperature (T0) of 

Type I fruit starch was higher than the other four type starches, and T0 of Type V was lower 

than Type III and IV. Type I and II Zapallo Macre fruit starches had higher peak 

gelatinisation temperature than the other three types. Type II had higher conclusion 

gelatinisation temperature (Tc) than the four other types and Type I also had higher Tc than 

Type III, IV and V. The range of gelatinisation temperature (Tc-T0) (ROG) showed large 

variation among the Zapallo Macre fruit-type starches. Type I fruit starch ROG was 

considerably lower than the four other types. Type II ROG was considerably higher than the 

four other types and range was almost twice as broad as Type I. Type V ROG was higher 

than Type I and III. Enthalpy change of gelatinisation (AH) for the Zapallo Macre type fruit 
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starches also showed considerable differences. Type IV AH was lower than all other types 

except Type V. Starch from Type I had higher AH than the other four type starches. 

Thermal transition temperatures, enthalpy change of thermal transition and percent 

rétrogradation for the Zapallo Macre fruit-type retrograded starches are shown in Table 6. 

No differences were observed in onset temperature of the thermal transition. However, 

differences were observed in peak temperature (TPR) of the thermal transition with Type I 

fruit starch being lower than all four other types. Type I and IV fruit starches had lower 

conclusion temperature of the thermal transition than Type V. Enthalpy change of the 

thermal tranisiton of retrograded starch was higher for Type III than Type II and IV. Percent 

rétrogradation of Type III and Type V starch was greater than Type II. 

Starch pasting and gel properties 

Pasting properties of the Zapallo Macre type fruit starches are shown in Table 7. Pasting 

properties of Type V were not investigated due to insufficient starch yield to conduct 

analysis. Type I fruit starch had lower peak viscosity than Type II, III and IV. Type II starch 

also had higher peak viscosity than Type III. Breakdown of Type III paste was substantially 

lower than that of Type I, II and IV starch paste. Final viscosity and setback of Type III and 

IV starch pastes were higher than Type I and II. Pasting temperature of Type IV starch was 

considerably lower than the other three starches and Type I pasting temperature was also 

higher than Type II. 

Properties of gel firmness and stickiness for the Zapallo Macre type fruit starches are 

shown in Table 8. After gelatinised starch had been stored for 1 d at 4°C, Type I starch gels 

were less firm than starch from Type II, III and IV fruit. Type III starch gels were also 

firmer than Type II starch gels. After starch gels were stored 7 d, Type I starch gels were 
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still considerably softer than other three fruit-type starch gels. Type III gels were firmer than 

other three fruit-type starch gels. Type I and IV fruit starch gel stickiness was lower than 

Type II and III after 1 d storage at 4°C. No differences in gel stickiness among the fruit-type 

starches was observed for starch gels stored 7 d at 4°C. 

Fruit hardness 

Hardness of the five Zapallo Macre fruit types steamed 0 to 20 min is shown in Table 9. 

Large variation in hardness was observed among fruit of the same type category for raw fruit 

and fruit steamed 10 min or less. Despite the large variation, Type I fruit had lower hardness 

than Type II, IV and V. Type V fruit hardness was also lower than Type II and IV. For fruit 

steamed 2 min, Type I hardness was substantially lower than the other four types that all had 

very similar hardness. An almost identical trend was observed for fruit steamed 5 min except 

Type V was harder than Type I but not similar in hardness to the other three types. Type III 

fruit steamed 10 min was harder than Type I and V. After 15 and 20 min steaming, hardness 

for all types was in a similar range but Type IV was still harder than Type II. 

Fruit fracturability 

Fracturability of the five Zapallo Macre fruit types steamed 0 to 20 min is shown in Table 10. 

Similar to the trend for fruit hardness, fracturability of fruit within the same fruit type was 

very variable for raw fruit and fruit steamed up to 10 min. Type I fruit required less force to 

fracture raw fruit and fruit steamed 2 or 5 min compared with Type II, III and IV. 

Fracturability of raw fruit from Type V was lower than Type II and IV. Type I fruit steamed 

for 10 min had higher fracturability than Type II, IV and V fruit. Variability of fracturability 

for fruit steamed 15 or 20 min was reduced with Type I and IV fruit requiring more force to 
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fracture than other fruit steamed 15 min and no major differences in fruit fracturability 

observed for fruit steamed 20 min. 

Fruit springiness 

Springiness of raw and cooked Zapallo Macre squash fruit is shown in Table 11. For raw 

fruit and fruit steamed 2 min, Type II fruit had significantly lower springiness than the other 

four types based on their standard error of the mean. Type II fruit was also less springy than 

Type I, IV and V after 5 min steaming. After 10, 15 or 20 min steaming, Type I fruit was 

springier than the four other fruit-types. Type IV fruit steamed 20 min was less springy than 

the four other fruit-types. 

DISCUSSION AND CONCLUSIONS 

Very few studies have involved the Cucurbita maxima cultivar Zapallo, and of the nine 

studies we found, seven focused on diseases of Zapallo. One study compared six Zapallo 

cultivars but the findings are unknown as the study was reported in Spanish (Montesinos-

Vassalla and Morales-Deza 1972). Another study, also of unknown conclusions because it 

was written in Spanish, did clearly find variability in shape of Zapallo fruit based on the title 

of the publication (Lizana and Monardes 1978). Our study confirms the dramatic variability 

in fruit size, shape and colour for Zapallo cultivars (Fig 1.). 

The great variability in fruit phenotypes was also reflected in their starch content. 

Fruit with over 60% of their dry matter as starch were found attached to the same plants that 

produced fruit that accumulated little or no starch. Type I fruit is to our knowledge the first 

squash fruit to weigh over 10 kg and have over 40% of its dry matter as starch (Table 1). 

Large squash fruit which accumulate a high percentage of starch could be important from a 

commercial viewpoint as this may enable a rapid harvest that obtains a high yield of starch. 
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Many studies have been investigating the mechanisms and regulation of starch biosynthesis 

in storage organs (Smith et al 1995, Kavakli et al 2000, Asano et al 2002), but many 

questions remain unanswered. The fact that Zapallo Macre fruit varied so dramatically in 

amount of starch accumulated makes this squash cultivar a potentially useful model system 

for advancing the knowledge of starch biosynthesis in storage organs. 

The variation in starch structural and functional properties of Zapallo Macre fruit is 

not typically observed for a cultivar of any crop and highlights the effects of plant breeding 

in creating crops with more consistent starch structure. With the current wide variation in 

starch functional properties among the Zapallo fruit-types, the potential of the starch for 

industrial purposes is probably limited until plant breeding first produces a Zapallo Macre 

line with greater consistency in starch properties. 

Texture of Zapallo Macre fruit varied substantially between the different fruit types, 

but also varied considerably among fruit of the same type, especially hardness. There was no 

clear trend of high-starch Zapallo Macre fruit types becoming softer or requiring less force to 

fracture at the early steaming times. The large differences in springiness of squash fruit types 

suggests there was variability in the degree of pectin breakdown and cell wall rupturing 

during the cooking process that can result in increased cell sliding and viscoelastic properties 

to the squash fruit (Bâtisse et al 1981, Redgwell et al 1997). 

Studies of Zapallo Macre fruit found at least eight different fruit phenotypes. Five of 

the phenotypes that were investigated in detail revealed great differences in starch content, 

starch structure, starch functional properties, and textural attributes throughout the entire 

cooking process. Considerations of commercialising Zapallo Macre squash fruit would have 

to consider the inherent variability when making a feasibility assessment. Additionally the 
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large variation in starch accumulation among fruit on the same plant could make Zapallo 

Macre an interesting model system for studying the mechanisms and regulation of starch 

biosynthesis in storage organs. 
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TABLE 1 

Mean fruit weight, water content of fruit and starch content (% dry weight) of Zapallo Macre 
squash fruit.# Values after ± represent the standard error of the mean. 

Zapallo Macre type Fruit weight (kg) Water content (%) Starch content (%) 
Type I 15.1 ±0.3 91.2 ± 1.1 42.6 ± 0.4 
Type II 3.7 ± 0.6 84.7 ± 1.7 16.1 ±0.1 
Type III 4.4 ± 1.9 87.6 ± 5.5 19.0 ±2.2 
Type IV 2.7 ±0.4 78.9 ±2.8 62.8 ± 3.0 
Type V 4.3 ± 0.5 90.5 ± 4.2 12.1 ±0.9 
Fruit weight, water and starch contents were averaged from three replicates. 
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TABLE 2 

Iodine affinities, apparent amylose and absolute amylose contents for Zapallo Macre squash 
fruit defatted starches at harvest. Values after ± represent the standard error of the mean. 

Iodine Affinity 
Apparent 
amylose 

Absolute 
amylose 

Zapallo Macre type 
whole starch 

amylopectin 
fraction 

content (%)* content (%f 

Type I 6.92 ±0.13 3.89 ±0.13 34.8 ±0.7 19.6 ±0.7 
Type II 6.46 ± 0.32 3.60 ±0.16 32.5 ± 1.6 18.1 ±0.8 
Type III 6.75 ±0.12 3.86 ±0.03 33.9 ±0.6 19.4 ±0.2 
Type IV 7.15 ±0.18 3.63 ± 0.09 35.9 ±0.9 18.3 ±0.5 
Type V 6.39 ±0.00 3.92 ± 0.04 32.1 ±0.0 19.7 ± 0.2 

Apparent amylose contents were averaged from two analyses for each of three replicates.; 
Values were calculated from dividing iodine affinity by a factor of 0.199. 
# Absolute amylose contents were averaged from two analyses for each of three replicates.; 
Values were calculated by subtracting iodine affinity for the amylopectin fraction from the 
iodine affinity for the whole starch, divided by a factor of 0.199. 
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TABLE 3 

Average amylopectin molecular weight, polydispersity and gyration radius of Zapallo 
Macre squash fruit starches extracted from fruit at harvest*. Values after ± represent 
the standard error of the mean. 

Zapallo Macre type" MwX 10* 
(g/mol)* 

Polydispersity 
(Mw) 

Rz (nm)* 

Type I 3.03 ± 0.25 1.41 ±0.01 300 ± 1 
Type II 3.01 ±0.19 1.82 ±0.17 310 ± 4 
Type III 3.92 ± 0.26 1.40 ±0.01 321 ±3 
Type IV 3.68 ± 0.02 1.23 ± 0.03 310 ± 2 
TypeV 3.59 ±0.18 1.35 ±0.01 313 ± 1 
Data were obtained from two injections of all three replicates. 

* Starch samples were dissolved in 90% DMSO solution and precipitated with 5 vol. 
ethanol; Freshly prepared starch aqueous solution (100 \iL; 0.8 mg/mL) was injected to 
HP SEC system. 
* weight-average molecular weight. 
* z-average radius of gyration. 
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TABLE 4 

Branch chain-length distributions of squash fruit amylopectins purified from starch extracted from Zapallo 
Macre fruit at harvest**. Values after ± represent the standard error of the mean. 

Zapallo Macre type Average Percent distribution 
CL DP 6-9 DP 6-12 DP 13 -24 DP 25 -36 DP > 37 

Type I 27.2 ± 0.3 6.3 ± 0.6 16.5 ± 0.9 39.5 ± 0.5 17.2 ± 0.5 26.3 ± 1.0 
Type II 29.6 ± 1.6 4.2 ± 0.7 12.1 ± 2.6 33.4 ± 6.3 21.2 ± 5.1 32.9 ± 3.8 
Type III 28.4 ±0.9 4.5 ±0.1 13.7 ± 0.3 39.1 ± 0.6 17.7 ± 1.2 29.3 ± 2.1 
Type IV 29.0 ±0.1 4.5 ± 0.2 13.5 ± 0.1 38.4 ± 0.6 17.7 ± 0.0 30.0 ± 0.4 
Type V 25.8 ± 1.7 5.7 ±0.4 16.5 ± 1.4 44.0 ± 3.8 15.7 ± 0.6 23.3 ± 4.6 

* Grouping of degree of polymerization (DP) numbers followed that of Hanashiro et al (1996). 
* Values comprise of two injections for all three replicates. 
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TABLE 5 

Thermal properties of native Zapallo Macre squash starches isolated from fruit at harvest. Values after ± 
represent the standard error of the mean. 

Zapallo Macre type* To (°Cf T,(°C) Tc(°C) Range (°C)* AH(J/g) 

Type I 64.3 ± 0.4 67.4 ± 0.7 70.2 ± 0.5 5.9 ±0.3 17.3 ±0.8 
Type II 60.3 ± 0.6 66.9 ± 0.3 71.6 ±0.5 11.3 ± 1.9 15.5 ±0.6 
Type III 61.3 ±0.8 65.3 ± 0.9 68.4 ± 0.9 7.1 ±0.1 15.3 ±0.2 
Type IV 61.3 ±0.4 65.3 ± 0.5 68.8 ± 0.6 7.5 ±0.3 12.5 ±0.6 
Type V 60.0 ± 0.4 64.2 ± 0.7 68.1 ±0.7 8.1 ±0.4 13.4 ±0.3 

* Starch samples (-2.0 mg, dsb) and deionized water (-6.0 mg) were used for the analysis; T0, Tp, Tc and 
AH are onset, peak, conclusion temperature, and enthalpy change, respectively. 
* Values were calculated from three analyses for each of three replicates. 
* Range of gelatinization is equal to Tc-T0. 
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TABLE 6 

Thermal properties of starch isolated from Zapallo Macre squash fruit at harvest and retrograded. 
Values after ± represent the standard error of the mean. 

Zapallo Macre type T0 (°C) Tp (°C) Tc (°C) AH (J/g) % rétrogradation 
Type I 36.9 ± 1.7 52.8 ± 0.9 65.5 ± 0.2 8.7 ± 0.6 50.7 ±4.0 
Type II 37.6 ± 1.0 57.1 ±0.7 66.0 ± 0.8 7.0 ± 0.3 45.3 ± 1.8 
Type III 37.7 ± 1.0 55.4 ± 1.0 65.0 ±1.6 8.9 ±0.7 58.0 ±4.9 
Type IV 36.5 ±0.8 56.8 ±0.1 65.2 ±0.1 6.4 ± 0.6 51.0 ±2.7 
Type V 37.8 ± 1.2 57.3 ± 0.9 66.5 ± 0.3 7.7 ± 1.1 57.0 ±7.6 

Same starch samples after gelatinization (see Table 5) were left for 7 days at 4°C and rescan using DSC. 
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TABLE 7 

Pasting properties of Zapallo Macre squash fruit starches, extracted at harvest, measured by Rapid Visco-Analyzer. 
Values after ± represent the standard error of the mean. 

Zapallo Macre type* Peak Viscosity" Breakdown" Final Viscosity" Setback" Pasting Temperature (°C) 
Type I 195 ± 1 72 ± 1 2 1 2  ± 2  89 ±0 68.1 ±0.0 
Type II 228 ± 17 83 ± 12 234 ±5 89 ± 1 67.2 ± 0.6 
Type III 204 ±5 55 ±5 259 ±3 109 ±0 67.9 ±0.2 
Type IV 2 1 9  ± 2  71 ±4 251 ± 10 104 ±4 65.5 ±0.0 
Type V na na na na na 
8% (w/w) starch suspension measured in duplicate for all three replicates. 

# Viscosity measured in Rapid Visco-Analyzer units (RVU), 1 RVU =12 centipoise. 
na = not analyzed due to insufficient starch yield. 
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TABLE 8 

Gel firmness (g) and gel stickiness (g/sec) from starches extracted from Zapallo Macre 
fruit at harvest, heated under RVA temperature profile and stored at 4°C for 1 or 7 d#. 
Values after ± represent the standard error of the mean. 

Gel Firmness Gel Stickiness 
Zapallo Macre type 1 Day 7 Days 1 Day 7 Days 
Type I 14.7 ±0.6 18.5 ±0.4 -7.1 ± 1.0 -17.8 ±0.9 
Type II 17.6 ±0.3 21.2 ±0.8 -12.3 ±0.9 -18.5 ±2.4 
Type III 18.9 ±0.3 27.9 ± 0.7 -11.9 ± 1.3 -16.4 ± 1.9 
Type IV 18.0 ±0.4 23.5 ±0.5 -8.4 ± 0.8 -15.1 ±2.0 
Type V na na na na 

* Values were obtained from five measurements for each of three replicates, 
na = not analyzed due to insufficient starch yield. 
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TABLE 9 

Hardness (N) of Zapallo Macre squash fruit at harvest and steamed for 0 to 20 minutes*. 
Values after ± represent the standard error of the mean. 

Steaming Time (min) 
Zapallo Macre type 0 2 5 10 15 20 
Type I 345 ±31 226 ± 17 218 ± 12 49 ±8 22 ±2 17 ± 1 
Type II 682 ±81 646 ± 10 404 ± 77 120 ± 90 1 8  ± 0  12 ± 1 
Type III 525± 153 622 ±143 457± 139 110 ± 1 2 3  ± 9  15 ± 1 
Type IV 661 ± 73 664 ± 236 457 ± 26 84 ±44 33 ± 3 19 ±3 
Type V 537 ±6 620 ± 73 276 ± 30 5 3  ± 2 6  22 ±7 1 9  ± 6  

# Hardness measurements are from four fruit from each of three replicates. 
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TABLE 10 

Fracturability (N) of Zapallo Macre squash fruit at harvest and steamed for 0 to 20 minutes*. 
Values after ± represent the standard error of the mean. 

Steaming Time (min) 
Zapallo Macre type 0 2 5 10 15 20 
Type I 333 ± 24 190 ± 13 117 ± 9 47 ±3 10 ± 1 1 ±0 
Type II 647 ±3 501 ±82 241 ± 16 13 ± 2 4 ± 2 2 ± 0  
Type III 464±131 535±168 355±186 64 ±45 5 ± 3 3 ± 1 
Type IV 720 ± 87 549± 187 348 ± 73 16 ± 1 12 ± 0 4 ± 2 
Type V 369±141 384±101 131± 110 11 ±3 9 ± 7 6 ± 4 

# Fracturability measurements are from four fruit from each of three replicates. 

u> 



www.manaraa.com

TABLE 11 

Springiness (mm) of Zapallo Macre squash fruit at harvest and steamed for 0 to 20 minutes*. 
Values after ± represent the standard error of the mean. 

Steaming Time (min) 
Zapallo Macre type 0 2 5 10 15 20 
Type I 12.91 ± 0.02 12.95 ± 0.02 13.00 ± 0.03 13.53 ± 0.09 13.40 ± 0.05 13.43 ± 0.07 
Type II 11.65 ± 0.15 12.08 ± 0.02 12.40 ± 0.10 12.92 d= 0.13 12.72 ± 0.13 13.12 ± 0.04 
Type III 12.58 ± 0.01 12.29 ± 0.05 12.66 ± 0.24 12.92 ± 0.32 13.02 ± 0.23 13.10 ± 0.00 
Type IV 12.39 ± 0.11 12.32 ± 0.08 12.63 0.07 12.86 0.19 12.79 ± 0.11 12.58 ± 0.22 
Type V 12.53 ± 0.02 12.97 i 0.12 12.97 ± 0.12 13.16 0.16 12.88 ± 0.43 13.05 ± 0.25 
Springiness measurements are from four fruit from each of three replicates. 

4^ U> 
to 
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Fig 1. Illustration of some, but not all, of the diversity in size, shape and color of Zapallo 
Macre winter squash fruit. This photo shows the five fruit types selected. The large white-
skin squash at centre of picture is Type I. The dark green large fruit to the left of centre is 
Type II. The grey skin squash to the left of centre and in front of the dark green squash is 

Type III. The small orange and green variegated squash located at front centre of picture is 
Type IV. The large oblong pink skin squash at front right is Type V. 
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Fig 2a. The fruit interior of Zapallo Macre winter squash fruit type I (top) and type II 
(bottom). Extremities on scale = 5 cm. 
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Fig 2b. The fruit interior of Zapallo Macre winter squash fruit type III (top) and type IV 
(bottom). Extremities on scale = 5 cm. 
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Fig 2c. The fruit interior of Zapallo Macre winter squash fruit type V. Extremities on scale 
= 5 cm. 
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CHAPTER 10. STRUCTURAL AND FUNCTIONAL PROPERTIES OF APPLE 
{Malus domestica Borkh) FRUIT STARCH. 
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Abstract 

Structural and functional properties of six apple cultivars (Gala, Golden Delicious, 

Granny Smith, Jerseymac, Jonagold and Royal Gala) fruit starch were investigated. Apple 

starches exhibit C-type X-ray diffraction patterns, and granules ranged from 2-12 jam. Apple 

fruit had 44-53% of dry matter as starch. Apparent amylose content was high (40-48%) but 

iodine affinity of amylopectin was high, resulting in absolute amylose content of 26-29%. 

Amylopectin weight-average molecular weight ranged from 4.6 to 11.1 x 108. Proportion of 

long-chain amylopectins was high. Onset gelatinization temperature ranged from 64-66°C 

and AH was high (16-18 J/g). Rétrogradation percentage, after 7 d at 4°C ranged from 42-

47%. Most distinctive characteristic of apple starch was that three cultivars had extremely 

low breakdown (< 4 RVU) and very high setback (> 100 RVU). Peak and final viscosities 

ranged from 99-148 and 144-224 RVU, respectively. Pasting temperature was about 70°C. 

Significant differences were observed in gel firmness and stickiness among cultivars. 

Keywords: Apple starch, Starch structure, Starch function, Amylose, Amylopectin, Malus, 

1. Introduction 

mailto:iiane@iastate.edu
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Starch is the main carbohydrate of plant storage organs. Starch has been extensively 

characterized in cereals, root and tuber crops, but little research has been done characterizing 

fruit starches. Apples, like many other fruit crops, accumulate starch at early stages of 

maturation and progressively degrade starch to increase sweetness as maturity nears 

(Warrington, Fulton, Halligan, & de Silva 1999). Hail damage is a frequent cause of crop 

loss in the apple industry, resulting in premium apples being downgraded for juicing and 

other processing (Dodds, Penrose, Bower, & Nicol 1994). Hail damage often occurs when 

fruit are immature and substantial amount of starch is present. Therefore, if apple starches 

possess some unique characteristics, fruit may be more valuable for their starch in niche 

industries rather than for juicing. 

Very little is known about the characteristics of apple starch, and in fact only one 

publication exists investigating starch characteristics of one apple cultivar (Potter, Hassid, & 

Joslyn 1949). Techniques and instrumentation to analyze starches have greatly advanced 

since then. Unfortunately starch content was not reported. Amylose was reported to consist 

24% of total starch based on pentasol precipitation method, and 26.5% based on 

potentiometric iodine titration method. (3-amylase hydrolysis of amylose yielded 90% 

maltose, and hydrolysis ceased for amylopectin when 64% was degraded to maltose. 

Acetylation of amylopectin was used to determine its molecular weight to be 1.2 x 106. End-

group determination by periodate oxidation showed average of 24 glucose residues per end-

group of amylopectin. Amylose chain-length was determined to be 530 glucose residues. 

In this study we investigate starch structural and functional properties of six apple 

cultivars to determine if apple starches possess some distinctive characteristics. We also 

correlate structural and functional starch properties to explain the starch properties. 
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2. Materials and methods 

2.1 Plant Material 

Immature fruit from trees of six apple (Malus domestica Borkh) cultivars were 

harvested on August 8 and 9, 2002, at the Iowa State University Horticultural Farm, 2 miles 

east of Gilbert, Iowa. Cultivars studied were Gala, Golden Delicious, Granny Smith, 

Jerseymac, Jonagold and Royal Gala and illustrations of these cultivars can be found in 

Appendix C. Three replicates, each consisting of 20 apples collected randomly, which 

included fruit from center of tree and towards end of branches, as well as varying tree canopy 

heights, were collected for each cultivar. 

2.2 Starch Isolation and Quantification, and Water Content of Apple Fruit 

Starch was isolated from apple fruit using method reported by Badenhuizen (1964) 

with slight modification by Kasemsuwan, Jane, Schnable, Stinar, & Robertson (1995) and 

further modification by Stevenson & Jane (Chapter 2). On the same day as being harvested, 

apple fruit were sliced into quarters and blended in 0.3% (w/v) sodium metabisulfite using 

Osterizer blender (Oster® Designer® Slope Blender 14 speed, grind mode used, Sunbeam 

Products Inc., Boca Raton, FL). Apple starch puree was then filtered through 106 (xm mesh 

and the filtrate was spun at 7,000 rpm for 40 min to deposit starch. To remove protein and 

lipids such as chlorophyll pigments, starch pellet was washed by mechanical stirring for 1 h 

with 10% toluene in 0.1 M sodium chloride and left standing for at least 4 h to allow starch to 

settle out. The washing procedure was repeated several times until the supernatant remained 

clear. Toluene waste was repeatedly left standing for 24 h to allow physically entrapped 
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starch to deposit, until no more starch was obtained. Starch obtained from toluene waste was 

combined with starch that initially deposited from toluene washes. Toluene/salt washed 

starch was washed three times with distilled water, twice with ethanol, and then recovered by 

filtration using Whatman No. 4 filter paper. Purified starch cake was dried in a convection 

oven at 35°C for 48 h. Water content of apple fruit was determined by freeze-drying finely 

diced fruit. Total starch content of freeze-dried apple fruit powders, measured in duplicate, 

was determined using total starch assay kit (Megazyme International Ireland Ltd., Wicklow, 

Ireland), based on AO AC method 996.11, AACC method 76.13 and ICC standard method 

No. 168, in which fruit powders are hydrolyzed with a-amylase and amyloglucosidase, and 

subsequent glucose content determined using glucose oxidase-peroxidase. Internal standards 

of com starch were added to samples to check quantitation and recovery of starch. 

2.3 Starch Granule Morphology by Scanning Electron Microscopy 

Starch granules, spread on silver tape and mounted on a brass disk, were coated with 

gold/palladium (60/40) for each cultivar. Sample images were observed at 1500x 

magnification under a scanning electron microscope (JOEL model 1850, Tokyo, Japan) 

following the method of Jane, Kasemsuwan, Leas, Zobel, & Robyt (1994). 

2.4 Starch Crystalline Structure by X-ray Diffractometry 

Crystallinity of starch granules was studied using X-ray diffractometry. X-ray 

diffraction patterns were obtained with copper, Ka radiation using a Siemens D-500 

diffractometer (Siemens, Madison, WI). Analysis was conducted following procedure of 

Song & Jane (2000). Degree of crystallinity was calculated based on method of Hayakawa, 
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Tanaka, Nakamura, Endo, & Hoshino (1997). The following equation was used to determine 

percent crystallinity: 

Crystallinity (%) = Ac/(Ac + Aa) x 100 

where Ac = crystalline area on the X-ray diffractogram and Aa = amorphous area on the X-

ray diffractogram. 

2.5 Molecular Weight Distribution and Gyration Radius of Amylopectin by High-

Performance Size-Exclusion Chromatography (HPSEC) 

Weight-average molecular weight and z-average gyration radius of amylopectin were 

determined using high-performance size-exclusion chromatography equipped with multi-

angle laser-light scattering and refractive index detectors (HPSEC-MALLS-RI). Starch 

samples, duplicate measurements of each replicate for all cultivars, were prepared as 

described by Yoo & Jane (2002a). The HPSEC system consisted of a HP 1050 series 

isocratic pump (Hewlett Packard, Valley Forge, PA), a multi-angle laser-light scattering 

detector (Dawn DSP-F, Wyatt Tech. Co., Santa Barbara, CA) and a HP 1047A refractive 

index detector (Hewlett Packard, Valley Forge, PA). To separate amylopectin from amylose, 

Shodex OH pak KB-G guard column and KB-806 and KB-804 analytical columns (Showa 

Denko K.K., Tokyo, Japan) were used. Operating conditions and data analysis are described 

by Yoo & Jane (2002b), except flow rate used was 0.3 mL/min and sample concentration 

was 0.8 mg/mL, 

2.6 Apparent and Absolute Amylose Contents by Potentiometric Autotitration 
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Apparent and absolute amylose contents of starch were determined following the 

procedure of Lu, Jane, Keeling, & Singletary (1996). Analysis was based on iodine affinities 

of defatted whole starch and amylopectin fraction using a potentiometric autotitrator (702 

SM Titrino, Brinkmann Instrument, Westbury, NY). Starch samples were defatted using a 

90% dimethyl sulfoxide (DMSO) solution, followed by alcohol precipitation. Determination 

of amylose content was duplicated for each replicate of each apple cultivar. 

2.7 Amylopectin Branch Chain-Length Distribution by High-Performance Anion-Exchange 

Chromatography (HPAEC) 

Amylopectin was fractionated by selective precipitation of amylose with n-butanol as 

described by Schoch (1942). Amylopectin (2 mg/mL) was defatted in boiling 90% DMSO 

for 1 h, followed by stirring for 24 h and then debranched using isoamylase (EC 3.2.1.68 

from Pseudomonas amyloderamosa) (EN102, Hayashibara Biochemical Laboratories Inc., 

Okayama, Japan) as described by Jane & Chen (1992). Branch chain-length distribution of 

amylopectin was determined using an HPAEC system (Dionex-300, Sunnyvale, CA) 

equipped with an amyloglucosidase (EC 3.2.1.3, from Rhizopus mold, A-7255, Sigma 

Chemical Co., St Louis, MO) post-column, on-line reactor and a pulsed amperometric 

detector (HPAEC-ENZ-PAD) (Wong & Jane 1997). PA-100 anion exchange analytical 

column (250 x 4 mm, Dionex, Sunnyvale, CA) and a guard column were used for separating 

debranched amylopectin samples. Gradient profile of eluents and operating conditions were 

described previously (McPherson & Jane 1999). HPAEC-ENZ-PAD and HPSEC analysis 

was duplicated for each replicate of each cultivar. 
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2.8 Thermal Properties by Differential Scanning Calorimetry (DSC) 

Thermal properties of starch were determined using a differential scanning 

calorimeter (DSC-7, Perkin-Elmer, Norwalk, CT) (Jane et al. 1999). Approximately 2 mg of 

starch was weighed in an aluminum pan, mixed with 6 mg of deionized water and sealed. 

The sample was allowed to equilibrate for 2 h and scanned at a rate of 10°C/min over a 

temperature range of 10-100°C. An empty pan was used as the reference. Rate of starch 

rétrogradation was determined using the same gelatinized samples, stored at 4°C for 7 d, and 

analyzed using DSC as described previously (White, Abbas & Johnson, 1989). All thermal 

properties were carried out in triplicate for each replicate of each cultivar. 

2.9 Pasting Properties by Rapid Visco-Analyser (RVA) and Gel Properties 

Starch pasting properties were analyzed using a rapid visco-analyser (RVA-4, 

Newport Scientific, Sydney, Australia) (Jane et al. 1999). Starch suspension (8%, w/w), in 

duplicate for each replicate of each cultivar, was prepared by weighing starch (2.24 g, dry 

starch basis (dsb)) into a RVA canister and making up the total weight to 28 g with distilled 

water. Starch suspension was equilibrated at 30°C for 1 min, heated at a rate of 6.0°C/min to 

95°C, maintained at that temperature for 5.5 min, and then cooled to 50°C at a rate of 

6.0°C/min. Constant paddle rotating speed (160 rpm) was used throughout entire analysis. 

Immediately after completion of RVA sample run, spindle was removed, and canister was 

wrapped in several layers of Saran® wrap, to minimize dehydration, and placed at 4°C. 
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After 1 or 7 d, canisters were removed from 4°C, equilibrated to room temperature, and gel 

properties were measured using a Stable Micro Systems TAXT2z Texture Analyzer (Texture 

Technologies Corp., Scarsdale, NY) equipped with Texture Expert for Windows software (v 

1.22). Each gel was measured five times using a 4 mm diameter cylindrical stainless steel 

punch probe (TA54). Pretest speed was 2.0 mm/s, and gels were compressed at a test speed 

of 0.9 mm/s and a penetration test distance of 7.5 mm. Peak force was reported as the 

firmness of gels and stickiness of gels was defined as the negative load portion of the curve 

as described previously (Takahashi & Seib, 1988). 

2.10 Statistical analysis 

All statistical significance tests were calculated using SAS (1999) and applying 

Tukey difference test (Ramsey & Schafer 1996) at the 5% level of significance. Correlations 

between apple starch structural and functional properties were conducted using SAS (1999) 

and the PROC CORR function specifying use of the Pearson correlation coefficient. A 5% 

level of significance was used to discriminate correlations of importance. Means of the apple 

cultivars were correlated, with n =6 for all correlations. 

3. Results and discussion 

3.1 Starch content 

Apple cultivar starch contents, shown in Table 1, were significantly different (P = 

0.04). Granny Smith apples had significantly greater starch content than Royal Gala, and this 

appeared to be irrespective of fruit maturation stage since average fruit weight and 



www.manaraa.com

445 

pigmentation skin color were similar. Average fruit weight, as well as red anthocyanin 

pigments present (from visual observations and see Appendix C), indicate that Jerseymac 

fruit maturity may have been more advanced than other cultivars, possibly explaining its 

relatively low starch content. Starch content of immature apple fruit is difficult to compare 

with other literature data because most report starch content at harvest, and most researchers 

measure starch index during fruit development, especially for apples. Apple starch content 

of 28 mg/g fresh weight has been previously reported for Royal Gala fruit during 

development (Brookfield, Murphy, Marker, & MacRae 1997), but no dry matter contents 

were provided to make valid comparisons with our data, although their starch content 

measurements appear low relative to our results. Bowen & Watkins (1997) studied Fuji 

apples during maturation and reported 4% starch content on dry weight basis, which is 

somewhat below the values we report, although this study reported highest starch content at 

first sampling time, in which some starch may have degraded. Studies of developing pear 

fruit also report highest starch levels at 3-4% dry weight (Singh & Dhillon 1982). Besides 

from some winter squash fruit, which have higher starch contents than apple fruit ( Hurst, 

Corrigan, Hannan, & Lill 1995, Chapter 2), the only other report of substantial starch content 

in fruit is 20% of dry matter in tomato fruit 20 d post anthesis (Brampton, Asquith, Parke, 

Barraclough, & Hughes 1994). 

3.2 Starch granule morphology 

Scanning electron micrographs show all six apple cultivars have similar starch 

granule morphology and size distribution, with starch granule diameters typically ranging 
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between 2 to 12 p,m (Fig. 1). Starch granule shapes included spherical, polyhedral and dome 

shapes. Many dome-shaped granules exhibited the typical characteristics of a compound 

starch. The starch granule size range for apple fruit is similar to that of squash fruit (Chapter 

1, Chapter 2). Unlike squash fruit, apple starch has greater proportion of starch granules in 

the 6-9 pm diameter range, suggesting one initiation phase of starch biosynthesis, which has 

also been reported for tomato fruit (Brampton et al. 1994). Predominance of starch granule 

diameters between 6-8 |j,m has been reported for kiwifruit starch (Sugimoto, Yamamoto, 

Abe, & Fuwa 1988). Apple starch is also in similar granule size distribution range to starch 

from pineapple stem (Jane et al. 1994). A mixture of polyhedral and dome-shaped starch 

granules has also been observed from pineapple stem, babassu coconut, acorn (Jane et al. 

1994) and kiwifruit (Sugimoto et al. 1988). In complete contrast to apple fruit starch granule 

morphology and distribution, avocado and banana starch have been shown to have 

considerably longer elongated granules (Fuwa, Sugimoto, Takaya, & Nikuni 1979, Jane et al. 

1994). 

3.3 Starch Crystalline structure 

Apple starches all exhibited C-type X-ray diffraction patterns (Fig. 2), with a minor 

peak at 20 = 17.2° and a small peak at 20 = 5.5°, characteristic of all B-type starches, a single 

peak at 20 = 22-24° and another peak at 29 = 14.6°, characteristic of all A-type starches. The 

A-type X-ray diffraction pattern exhibits greater intensity, indicating that although apple 

starches are C-type, a greater proportion of the crystalline packing is A-type. Percentage 

crystallinity of Gala, Golden Delicious, Granny Smith, Jerseymac, Jonagold, and Royal Gala 
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apple starches, calculated based on X-ray diffractograms, was 43.7,47.3, 41.3,45.7, 40.6 and 

46.4, respectively. Starch crystallinity percentages of apple fruit starches are similar to 

squash fruit starches (Chapter 1, Chapter 2), but differences between cultivars are 

considerably smaller for apple starches. Starch crystallinity percentage was correlated to 

starch content (r = -0.79, P = 0.05) and the pasting parameter, trough (r = 0.91, P = 0.01). 

The C-type X-ray diffraction pattern of apple fruit starch is similar to that of banana fruit 

starch (Jane et al. 1999) but different from the B-type X-ray diffraction pattern found for 

starch of squash fruit (Sugimoto et al. 1998, Chapter 1) and kiwifruit (Sugimoto et al. 1988). 

3.4 Iodine affinity and amylose content 

Iodine affinities for defatted whole starches and the corresponding apparent amylose 

contents were significantly different among the apple cultivars (P = 0.05), with apparent 

amylose content of Jerseymac significantly higher than Gala (Table 2). Absolute amylose 

content, calculated by subtracting iodine affinity of amylopectin fraction from that of the 

defatted whole starch, was not significantly different for the apple cultivars. Iodine affinities 

of apple whole starch and amylopectin fraction were larger than that of most native starches. 

Iodine affinity of defatted whole apple starch was higher than that of potato (7.20) and 

mungbean starches (7.58) (Jane et al. 1999). Iodine affinity of apple amylopectin fraction 

was higher than that of all A-type starches, but was comparable with that of B-type starches, 

and was slightly lower than that of the B-type squash fruit starch (Chapter 2), suggesting high 

proportion of long-branch chains present in the amylopectin. The apparent amylose content 
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of apple fruit starch was two to three times higher than that reported for kiwifruit starch 

(Sugimoto et al. 1988). 

3.5 Amylopectin molecular weight and size 

Weight-average amylopectin molecular weight (Mw), polydispersity and gyration 

radius (Rz) of apple starches is shown in Table 3. Apple starch Mw ranged from 4.63 x 108 to 

1.11 x 109 g/mol for the six cultivars, with no significant differences. Apple starch Mw was 

larger than most starches reported (Yoo & Jane 2002b). Apple cultivars, Granny Smith, 

Jonagold and Royal Gala, had fruit starch with very low amylopectin molecular weight 

polydispersity (Mw/Mn) relative to most native starches (Chapter 1), a characteristic similar to 

squash fruit starches and mungbean starch (Chapter 1, Chapter 2). Amylopectin 

polydispersity of Granny Smith, Jonagold and Royal Gala starch was significantly lower than 

Gala. Differences in amylopectin polydispersity between Gala and Royal Gala are surprising 

since their genetic similarity (Kruczynska, Rutkowski, & Czynczyk 2001, Hansen & Zanon 

1982). All previously analyzed B- and C-type starches have polydispersities above two, 

except for potato (1.79) and squash (< 1.4) (Chapter 1), therefore it is surprising for some 

apple cultivars to have amylopectin with high uniformity. There is no evidence that the low 

polydispersity of apple and squash fruit starches provide a structure that allows rapid 

degradation by amylases to increase sweetness because other fruits with rapid starch 

degradation, such as banana, do not have low polydispersities (Chapter 1). 

Gyration radius of amylopectin was not significantly different among the apple 

cultivars, suggesting similar spatial arrangement of amylopectin chains within molecules. 
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Gyration radius of amylopectin from apple cultivars ranged from 406 to 435 nm, which is 

more than 40% wider than reported for any other C-type starch amylopectin, and is wider 

than all B-type starches except green leaf canna, and wider than all A-type starches except 

normal rice, waxy rice, sweet rice and Chinese taro (Yoo & Jane 2002b). Despite the wider 

dimension of apple amylopectin, density of these molecules was comparable or higher than 

lotus root and green banana C-type starches (Yoo & Jane 2002b). 

3.6 Amylopectin branch chain-length distribution 

Amylopectin branch chain-length distributions for the starches of apple cultivars are 

shown in Table 4. There was no significant difference among apple cultivars in amylopectin 

branch chain-length distribution. The most notable characteristic of all apple cultivar 

amylopectins was the very high proportion (29.7-32.4%) of long amylopectin chains (DP > 

37) (Table 4, Figure 3a and 3b), which far exceeded the proportion reported previously for 

any other C-type starch (green banana highest with 24% DP > 37) and also larger proportion 

than that of all B-type starches reported (26.1-29.5%) (Jane et al. 1999). Average chain-

length of apple amylopectin was also longer than that of other C-type starches but was 

comparable to that of B-type starches, because B-type had less (1.8-3.5%) short amylopectin 

chains (DP 6-9) (Jane et al. 1999). The peak DP(II) for apple amylopectin distribution (DP 

45.3-47) are shorter than that of the B- or C-type starch (DP 48-53), but are comparable with 

that of the A-type starches (DP 41-51) (Jane et al. 1999). 
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3.7 Thermal properties 

Thermal properties of native apple starches are shown in Table 5. Onset 

gelatinization temperature (T0) was significantly higher for Gala and Granny Smith than 

Golden Delicious, Jerseymac and Jonagold (P = 0.0001). Royal Gala had significantly 

higher T0 than Jonagold. Apple starch Tc tended to be 1-4°C higher than squash fruit starch 

(Chapter 1, Chapter 2) and kiwifruit starch (Sugimoto et al. 1988). Peak gelatinization 

temperature (Tp) was not significantly different for the apple cultivars, with extremities 

separated by just 0.9°C. Conclusion gelatinization temperature (Tc) was significantly higher 

for Gala, Jerseymac, Jonagold and Royal Gala than Granny Smith (P = 0.007). 

Retrograded apple starches (Table 6) had lower ToR than all other starches (Jane et al. 

1999), except squash fruit starches (Chapter 1, Chapter 2). Additionally, T0R of apple 

starches is surprising since A-type retrograded starches typically have lower T0R (Jane et al. 

1999). TPR, TCR, AHr and percentage rétrogradation of retrograded apple starches were 

similar to other C-type retrograded starches (Jane et al. 1999). Percent rétrogradation of 

apple fruit starches was lower than most squash fruit starches (Chapter 1, Chapter 2). There 

were no significant differences in starch rétrogradation properties among apple cultivars. 

3.8 Pasting properties 

Pasting properties of apple starches is shown in Table 7. The pasting property of 

breakdown was significantly different among the apple cultivars (P < 0.0001), with three 

cultivars exhibiting very low breakdown, a distinctive feature only previously reported for 

green leaf canna starch (Jane et al. 1999). Peak viscosities for Gala, Granny Smith and Royal 
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Gala were significantly higher than that of Golden Delicious, Jerseymac and Jonagold (P < 

0.0001). The same three apple cultivars with higher peak viscosity, all had significantly 

higher breakdown (P < 0.0001). Golden Delicious, Jerseymac and Jonagold had extremely 

low breakdown (Fig. 4). Despite little difference in trough among apple cultivars, final 

viscosity was higher for the three apple cultivars with extremely low breakdown, with 

Golden Delicious and Jerseymac significantly higher than Gala and Granny Smith (P -

0.0008). Golden Delicious, Jerseymac and Jonagold, which had low peak viscosity and 

breakdown, but high final viscosity, all had setback over 100 RYU, which is only been 

previously reported for cattail millet, mungbean, green leaf canna (Jane et al. 1999) and 

squash starches (Chapter 2). Setback of these three apple cultivars was significantly higher 

than other three cultivars (P < 0.0001). Gala, Granny Smith and Royal Gala, which had 

higher peak viscosity, tended to have a lower peak time, and all three were significantly 

lower than Jerseymac (P = 0.002). No large differences in pasting temperature were 

observed but Granny Smith was significantly lower than Jonagold (P - 0.01). 

3.9 Gel properties 

Firmness and stickiness of apple gels stored for 1 or 7 d at 4°C are shown in Table 8. 

Jerseymac gels, after 1 d storage, were significantly firmer than Gala, Golden Delicious, 

Jonagold and Royal Gala (P < 0.0001). Firmness of Gala gels, stored for 1 d, was 

significantly lower than all other cultivar gels. After 7 d at 4°C, Jerseymac still had the 

firmest gel, and was significantly firmer than Gala, Golden Delicious and Royal Gala (P = 

0.0002). Firmness of gels was found to only be correlated to apparent amylose content, long 



www.manaraa.com

452 

amylopectin chain-lengths and Tp. Since no correlation was established between gel 

firmness and absolute amylose content, and Tp can be influenced by amylopectin chain-

length, long-chain amylopectins are the likely contributor to firmer gels. 

No significant differences among apple cultivars were observed for stickiness of gels 

stored 1 d, but significant differences were observed after 7 d storage (P ~ 0.001). Gels from 

Golden Delicious and Jonagold starch were stickier than gels from Gala and Granny Smith. 

3.10 Correlations to Amylose Contents 

Correlation coefficients among selected apple starch structural and functional 

properties are shown in Table 9. Correlation coefficients are mentioned in text when not 

included in Table 9. Amylose content of apples was correlated with thermal, pasting and gel 

parameters. Apparent amylose content of apple cultivars was correlated to onset 

gelatinization temperature (T0), peak gelatinization temperature (Tp), enthalpy change of 

retrograded starch (AHR), peak viscosity, breakdown, final viscosity, setback, peak time (r = 

0.86, P = 0.03), second DP peak of amylopectin chain-length distribution (r = -0.79, P = 

0.05), average amylopectin chain-length (r = 0.92, P = 0.008), proportion of amylopectin 

chains that were either DP 13-24 (r = -0.92, P = 0.008) or DP > 37 and firmness of gels after 

1 d (r = 0.83, P = 0.04) and 7 d storage at 4°C. Higher apparent amylose content has been 

reported previously to result in lower T0 (Inouchi, Takei, Asaoka, Kawamura, Sakamoto, & 

Fuwa 1993, Visser, Suurs, Steeneken, & Jacobsen 1997, Demenke, Hucl, Abdel-Aal, Bâga, 

& Chibbar 1999) and lower peak viscosity (Wang, White, & Pollak 1993, Jane et al. 1999, 

Kuno, Kainuma, & Takahashi 2000). Iodine affinity of amylopectin fraction was correlated 
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to T0 (r = -0.89, P = 0.01), AHR (r = 0.87, P = 0.02), peak viscosity (r = -0.86, P = 0.03), 

breakdown (r = -0.89, P = 0.01), final viscosity (r = 0.82, P = 0.05), setback (r = 0.88, P = 

0.02), peak time (r = 0.87, P - 0.02), average amylopectin chain-length (r = 0.79, P = 0.05), 

proportion of amylopectin chains of either DP 13-24 (r = -0.91, P = 0.01) or DP > 37 (r = 

0.79, P = 0.05), and gel stickiness after 1 d (r = -0.79, P = 0.05) or 7 d (r = -0.80, P = 0.05) 

storage at 4°C. Despite all the correlations involving iodine affinity of amylopectin fraction, 

absolute amylose content was only correlated to pasting temperature, proportion of 

amylopectin chains of either DP 3-6 (r = 0.84, P = 0.04) or DP 25-36 (r = -0.79, P = 0.05) 

and gel stickiness after 7 d storage. Correlations between apparent amylose and long-chain 

amylopectins indicate that the latter was contributing to high iodine affinities observed for 

apple starches. 

3.11 Correlations to Amylopectin Molecular Weight and Gyration Radii 

Mw of apple cultivars was correlated to Rz (r = 0.94, P = 0.006), Tc (r = -0.81, P = 

0.05) and AH (r = -0.79, P = 0.05). Polydispersity of apple cultivars was correlated to 

rétrogradation percentage (r = -0.84, P = 0.04). Apart from Mw, Rz was not correlated to any 

other starch property. Amylopectin density was correlated to proportion of amylopectin 

chain-lengths of DP 6-9 (r = -0.79, P = 0.05). 

3.12 Correlations to Amylopectin Branch Chain-length Distribution 
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Amylopectin chain-length distribution was correlated to other starch structural and 

functional properties. The second DP peak of amylopectin branch chain distribution was 

correlated to previously mentioned apparent amylose content, as well as T0 of native (r = 

0.79, P = 0.05) and T0R of retrograded starch (r = 0.83, P = 0.04), and the pasting properties 

of peak viscosity (r = 0.91, P = 0.01), breakdown (r = 0.82, P = 0.05), setback (r = -0.81, P = 

0.05) and peak time (r = -0.84, P = 0.04). Average amylopectin chain-length was correlated 

to previously mentioned iodine affinity of amylopectin fraction and apparent amylose 

content, as well as Tp (r = -0.95, P = 0.004), and gel firmness after 1 (r = 0.90, P = 0.01) or 7 

d (r = 0.94, P = 0.005). T0 was specifically correlated to proportion of amylopectin chains 

with lengths of DP 13-24 (r = 0.82, P = 0.05), and Tp was correlated to DP 6-12, DP 25-36 (r 

= 0.79, P = 0.05) and DP > 37. Proportion of amylopectin chains with length DP 13-24 was 

correlated to pasting properties of peak viscosity (r = 0.91, P = 0.01), breakdown (r = 0.81, P 

= 0.05), setback (r = -0.79, P = 0.05), peak time (r = -0.80, P = 0.05) and gel firmness after 7 

d storage (r = -0.79, P = 0.05). Peak viscosity and gel firmness after 7d storage were also 

correlated to proportion of amylopectin chains of length DP > 37. 

3.13 Correlations to Starch Thermal Properties 

T0 was correlated to many starch properties including AH, AHR, peak viscosity, 

breakdown, final viscosity, setback, peak time (r = -0.98, P = 0.002), pasting temperature, 

stickiness of gels stored 1 d (r = 0.92, P = 0.008), stickiness of gels stored 7 d and also 

previously mentioned correlations with apparent amylose content, iodine affinity of 

amylopectin fraction, second DP peak of amylopectin chain-length distribution, and 
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proportion of amylopectin chains of length DP 13-24. Proportion of amylopectin chain-

lengths of DP 13-24 was correlated to AHR (r = -0.84, P = 0.04). 

3.14 Correlations to Starch Pasting Properties 

Correlation analysis can provide some clues to explain the low breakdown of Golden 

Delicious, Jerseymac and Jonagold. Breakdown was correlated to pasting parameters of peak 

viscosity, final viscosity, setback, peak time (r = -0.99, P = 0.0001) and pasting temperature. 

Breakdown was also correlated to gel stickiness after 1 d (r = 0.91, P = 0.01) and 7 d. As 

previously mentioned, breakdown was negatively correlated with apparent amylose content, 

iodine affinity of amylopectin fraction, AH, ROG, and AHR, and positively correlated to T0, 

T0R and TPR, second peak DP of amylopectin distribution and proportion of amylopectin 

chains of length DP 13-24. Correlations tend to suggest that apple starches with low 

breakdown have greater amount of amylopectin with long chains. No amylose-lipid complex 

was observed for all apple starches, therefore the ability of amylose to help hold granule 

together during swelling was likely to be similar for all cultivars. 

3.15 Correlations to Starch Gel Properties 

Gel stickiness was correlated to most pasting parameters. Stickiness of gels stored for 

1 d was correlated to peak viscosity (r = 0.79, P = 0.05), breakdown (r = 0.91, P = 0.01), 

final viscosity (r = -0.90, P = 0.01), setback (r = -0.88, P = 0.02), peak time (r = -0.88, P -

0.02) and pasting temperature (r = -0.90, P = 0.01). Stickiness of gels stored for 7 d was 

correlated to peak viscosity, breakdown, setback, peak time (r = -0.79, P = 0.05) and pasting 
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temperature. Apple gel stickiness has been previously mentioned to be correlated positively 

to absolute amylose content, T0, ToR, TpR and TcR, and negatively correlated to iodine affinity 

of amylopectin fraction, AH, ROG, and AHR. Amylose content had previously been reported 

to be correlated to gel stickiness (Yamin, Lee, Pollak, & White 1999). Correlations suggest 

apple starch with higher amylose content and shorter amylopectin chains have stickier gels. 

Firmness of gels stored for 1 or 7 d at 4°C was correlated to apparent amylose 

content, Tp and apple fruit weight (r = 0.84, P = 0.03 for both). Proportion of very long 

amylopectin branch chain-lengths (DP >37) was correlated to firmness of gels stored for 7 d. 

4. Conclusion 

Six apple cultivars had starch granules ranging 2-12 gm, and starches exhibited C-

type X-ray diffraction patterns. Absolute amylose content ranged from 26-29% and 

amylopectin molecular weight was high. Average amylopectin branch chain-length was very 

long and this may have contributed to the distinctive pasting properties of very low 

breakdown and very high setback. Onset gelatinization temperature was 64-66°C and AH 

was high (16-18 J/g). Apple starches exhibited high gel firmness characteristics. 
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Table 1 

Average fruit weight (g), water content (%) and starch content (% dry weight) of apple fruit*. 

Cultivar Average Fruit 
Weight4 

Gala 103 
Golden Delicious 100 
Granny Smith 114 
Jerseymac 159 
Jonagold 123 
Royal Gala 109 

Starch contents were averaged from two duplicates of each of three replicates. 
* Average of 60 fruit (20 fruit per replicate). 
Values with different letters denote cultivar differences at the 5% level of significance for 

each comparison between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between 
cultivars in the respective column. 

Water Content Starch Content' 

89.4 45.8ab 

90.4 47.5* 
88.3 53.2" 
89.9 44.3* 
88.5 51.0* 
88.9 44.0" 

P = 0.18 P = 0.04* 



www.manaraa.com

Table 2 

Iodine affinities, apparent amylose and absolute amylose contents for defatted apple fruit 
starches*. 

Cultivar 
Iodine Affinity 

Apparent 
amylose 

Absolute 
amylose 

whole starch amylopectin 
fraction 

content (%)* content (%)# 

Gala 7.92" 2.12 39.8" 29.1 
Golden Delicious 9.16* 3.59 45.4* 28.0 
Granny Smith 8.62* 2.80 43.3* 29.3 
Jerseymac 
Jonagold 

9.57" 
9.02* 

3.77 
3.84 

48.1" 
46.1* 

29.1 
26.0 

Royal Gala 8.42* 3.13 42.4* 26.6 
P = 0.05* P = 0.09 P = 0.05 P = 0.95 

Apparent amylose contents were averaged from two analyses for each of three replicates.; 
Values were calculated from dividing iodine affinity by a factor of 0.199. 
* Absolute amylose contents were averaged from two analyses for each of three replicates.; 
Values were calculated by subtracting iodine affinity for the amylopectin fraction from the 
iodine affinity for the whole starch, divided by a factor of 0.199. 
* Values with different letters denote differences at the 5% level of significance for each 
comparison between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between 
cultivars in the respective column. 
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Table 3 

Average amylopectin molecular weight, polydispersity, gyration radius and density of 
apple fruit starches.** 

Cultivar# Mwx 10* 
(g/mol)* 

Polydispersity 
(Mw) 

Rz (nm)* p (g/mol/nm3)* 

Gala 4.63 3.16" 406 6.9 
Golden Delicious 7.20 2.14* 422 9.6 
Granny Smith 11.10 1.47b 435 13.5 
Jerseymac 6.41 1.80* 419 8.7 
Jonagold 6.47 1.54b 413 9.2 
Royal Gala 7.79 1.51b 428 9.9 

P = 0.79° P = 0.02 P = 0.94 P = 0.83 

Data were obtained from two injections of all three replicates. 
* Starch samples were dissolved in 90% DMSO solution and precipitated with 5 vol. ethanol; 
Freshly prepared starch aqueous solution (100 \ih; 0.8 mg/mL) was injected to HP SEC system. 
* weight-average molecular weight. 
* z-average radius of gyration. 
* Density is equal to Mw/Rz

3. 
* Values with different letters denote differences at the 5% level of significance for each 
comparison between cultivars in the respective column. 
° P represents the probability of F-statistic exceeding expected for each comparison between 
cultivars in the respective column. 
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Table 4 

Branch chain-length distributions of apple fruit amylopectins*#. 

Cultivar Peak DP Average Percent distribution 
I II CL DP 6-9 DP 6-12 DP 13-24 DP 25-36 DP >37 

Gala 13.0 46.3 27.9 4.6 15.9 39.0 15.0 29.7 
Golden Delicious 13.0 45.7 29.1 4.3 14.7 38.0 14.4 31.8 
Granny Smith 13.0 46.3 29.2 4.2 14.9 38.2 14.0 31.9 
Jerseymac 13.0 45.3 29.6 4.9 15.3 37.5 14.1 32.1 
Jonagold 13.0 45.3 29.1 4.5 14.9 37.2 15.2 32.4 
Royal Gala 12.7 47.0 28.4 4.4 15.6 38.5 15.7 29.9 

P = 0.39* f =0.57 P = 0.61 P = 0.76 P = 0.69 P = 0.53 

* Grouping of degree of polymerization (DP) numbers followed that of Hanashiro, Abe, & Hizukuri (1996). 
* Values were calculated from two injections for each of three replicates. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the 
respective column. 
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Table 5 

Thermal properties of native apple fruit starches. 

Cultivar* To (°C)*+ T,(°C) T„(°C) Range (°C)+ AH(J/g) 
Gala 66. la 70.9 77.1" 11.0b 17.1 
Golden Delicious 64.7bc 70.0 76.2* 11.4* 17.7 
Granny Smith 66.5" 70.1 75.lb 8.5= 15.8 
Jerseymac 64.2bc 70.0 76.9" 12.8" 17.3 
Jonagold 64.1c 70.3 77.2" 13.1" 17.4 
Royal Gala 65.5* 70.7 77.3" 11.8* 16.5 

P = 0.0001* il ©
 

P = 0.007 P< 0.0001 P =0.68 

* Starch samples (-2.0 mg, dsb) and deionized water (-6.0 mg) were used for the analysis; T0, Tp, Tc and 
AH are onset, peak, conclusion temperature, and enthalpy change, respectively. 
* Values were calculated from three analyses for each of three replicates. 
* Range of gelatinization is equal to Tc-T0. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars 
in the respective column. 
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Table 6 

Thermal properties of starch, retrograded for 7 days at 4°C, isolated from apple fruit*. 

Cultivar T,(°C) T,(°Q Tc(°C) AH (J/g) % rétrogradation 
Gala 36.9 513 64.3 7.1 41.6 
Golden Delicious 36.1 52.4 63.3 7.4 42.3 
Granny Smith 37.5 53.4 64.5 7.1 45.2 
Jerseymac 36.5 53.1 64.4 7.8 46.1 
Jonagold 36.5 52.8 615 7.9 45.5 
Royal Gala 37.6 53.1 64.7 7.5 47.3 

P = 0.34* P = 0.20 P = 0.21 P = 0.88 P - 0.95 

* Same starch samples after gelatinization (see Table 5) were left for 7 days at 4°C and rescan using DSC. 
* Values with different letters denote differences at the 5% level of significance for each comparison 
between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in 
the respective column. 
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Table 7 

Pasting properties of apple fruit starches measured by Rapid Visco-Analyser. 

Cultivar* Peak 
Viscosity** 

Trough* Breakdown* 
Final 

Viscosity* 
Setback* 

Peak Time 
(min) 

Pasting 
Temperature (°C) 

Gala 148* 102 46* 162bc 59b 9.5* 70.3* 
Golden Delicious 113b 109 4b 216* 107* 11.6* 70.7* 
Granny Smith 141a 90 51* 144° 54b 9.0C 69.9b 

Jerseymac 113b 111 2b 224* 113* 12.2* 70.6* 
Jonagold 99b 97 3b 199ab 102* 11.8* 71.3* 
Royal Gala 148* 111 37* 180abc 69b 9.8** 70.6* 

P< 0.0001* 

o
 

o
 II ft

, 

P< 0.0001 P = 0.0008 P< 0.0001 P = 0.002 il o
 

o
 

8% (w/w) starch suspension measured in duplicate for all three replicates. 
* Viscosity measured in Rapid Visco-Analyser units (RVU), 1 RVU = 12 centipoise. 
* Values with different letters denote differences at the 5% level of significance for each comparison between cultivars in the 
respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison between cultivars in the respective column. 
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Table 8 

Gel firmness (g) and stickiness (g sec) from starches extracted from apple fruit, heated 
under RVA temperature profile and stored at 4°C for 1 or 7 d#*. 

Cultivar Firmness Stickiness 
1 day 7 days 1 day 7 days 

Gala 21.2e 23.8= -15.8 -13.3" 
Golden Delicious 28.7b 34.2bc -18.1 -18.5b 

Granny Smith 34.0* 38.6* -14.2 -12.3* 
Jerseymac 40.2* 47.2* -17.4 -15.3* 
Jonagold 31.5^ 37.1* -18.1 -18.9b 

Royal Gala 29.4" 33.0"° -16.7 -16.0* 
P< 0.0001* P = 0.0002 P = 0.35 f = 0.001 

Values were obtained from five measurements for each of three replicates. 
* Values with different letters denote differences at the 5% level of significance for 
each comparison between cultivars in the respective column. 
* P represents the probability of F-statistic exceeding expected for each comparison 
between cultivars in the respective column. 
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Table 9 

Correlation coefficients (r x 100) among apple fruit starch of selected structural and functional properties. 

St ApA AbA T0 TP  ROG AH AHR DPE-IZ DP >37 PV BK FV SB PT 

St 100 
ApA 5 100 
AbA 0 -14 100 

TO 22 -83* 47 100 
TP -37 -83* -18 44 100 

ROG -51 51 -57 -88** 2 100 
AH 37 42 -25 -77* -14 76* 100 

AHR -18 78* -59 -92" -33 87* 52 100 

D?6-12 -65 -62 16 36 85' 10 -13 -25 100 
DP>37 56 85* -4 -56 -90" 14 21 51 -86* 100 

PV -21 -85* 35 89" 65 -62 -68 -78* 66 -83* 100 
BK 16 -86* 36 97" 58 -77* -81* -83' 49 -64 93" 100 
FV -44 79* -26 -93** -49 79* 82' 76* -30 44 -76* 69 100 
SB -22 87* -27 -96'' -61 76* 80* 80* -47 63 -89** -99'" 97** 100 
PT -12 50 -80* -86* -7 88" 71 85* -24 32 -76* -78* 68 71 100 
GF 10 89" 8 

76* 
-52 -80* 22 -1  60 -49 76* -55 -53 49 57 13 

GS 8 -53 
8 

76* 82' 27 -72 -73 -71 47 -38 76* 82' -74 -76* -91* 

St = starch content, ApA = apparent amy lose content, AbA = absolute amy lose content, T0 = onset gelatinization temperature, 
TP = peak gelatinization temperature, ROG = range of gelatinization temperature, AH = enthalpy change of gelatinization, AHR 
= enthalpy change of retrograded thermal transition, DP6-12 = proportion of amylopectin branch chain-lengths DP 6-12, DP>3? = 
proportion of amylopectin branch chain-lengths DP > 37, PV = peak viscosity, BK = breakdown, FY = final viscosity, SB = 
setback, PT = pasting temperature, GF = gel firmness after 7 d storage at 4°C and GS = gel stickiness after 7 d storage at 4°C. 
* = 0.05, ** = 0.01 and *** = 0.001 level of significance. 
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Figure 1. Scanning electron micrographs of Gala (A), Golden Delicious (B), Granny Smith 
(C), Jerseymac (D), Jonagold (E) and Royal Gala apple fruit starches (scale bar =10 jam). 
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Fig. 2. X-ray diffraction patterns of Gala, Golden Delicious, Granny Smith, Jerseymac, 
Jonagold and Royal Gala apple fruit starches. 
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Figure 3a. Relative peak area distributions of Gala, Golden Delicious, Granny Smith and Jerseymac apple fruit amylopectin 
branch chain-lengths analyzed by using a HPAEC-ENZ-PAD. Error bars represent standard error of the mean for each individual 
DP from two analyses of three replicates. DP = Degree of polymerization. 
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Figure 3b. Relative peak area distributions of Jonagold and Royal Gala apple fruit amylopectin branch chain-lengths analyzed by 
using a HPAEC-ENZ-PAD. Error bars represent standard error of the mean for each individual DP from two analyses of three 
replicates. DP = Degree of polymerization. 
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Fig. 4. Rapid Visco-Analyser pasting profiles of Gala, Golden Delicious, Granny Smith, Jerseymac, Jonagold and Royal Gala 
apple fruit starches (8.0% dsb, w/w). 
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GENERAL CONCLUSIONS 

Starch structural and functional properties of 13 winter squash (Cucurbita maxima 

D.) cultivars were investigated at harvest and after 5 or 10 weeks storage at 12°C. Texture 

profile analysis was carried out on winter squash fruit steamed at 6 different cooking times 

from 0 to 20 minutes, and for all three storage times. Correlations among squash starch 

structural and functional properties, and fruit textural attributes were calculated to investigate 

the role of starch structure in texture of winter squash and starch functional properties. 

Winter squash cultivars could be separated into three groups based on their starch 

content at harvest: (1) cultivars that accumulate < 1% of dry matter as starch; (2) cultivars 

that have 11-18% of dry matter as starch; (3) cultivars accumulating high levels of starch 

with over 50% of dry matter as starch. Squash starches have continuous granule size 

distribution, ranging from 1.5 to 14 pm in diameter, and exhibit B-type X-ray diffraction 

patterns. Average starch granule diameter tended to increase after storage. Squash 

amylopectin fraction had high iodine affinity resulting in large differences between apparent 

and absolute amylose contents. Absolute amylose content ranged from 11 to 21% at harvest 

and tended to decrease after 10 weeks storage. Squash starch weight-average amylopectin 

molecular weight ranged from 2.03 to 5.52 x 108 g/mol at harvest and increased after storage. 

A distinctive feature of squash amylopectins was their very low polydispersity, frequently 

observed below 1.3 for many cultivars. Polydispersity decreased after storage suggesting 

there was selective degradation of amylopectin molecules. Amylopectin gyration radius 

ranged from 294 to 349 nm at harvest and was largely unchanged after storage. Average 

amylopectin branch chain-length of starch extracted from fruit at all storage times ranged 

from 25.2 to 29.7. Squash amylopectins had high proportion of long branch chain-lengths 
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(DP > 37) ranging from 25.4 to 30.2 at harvest, and increased after storage for most squash 

cultivars that had sufficient starch remaining to perform analysis. 

Onset and conclusion gelatinization temperature of squash starches from fruit at 

harvest ranged from 60.6 to 65.0°C and 67.7 to 72.1°C, respectively, and decreased after 

storage. A distinctive thermal property of squash starches was several cultivars, especially 

the high-starch content buttercup squash, had very low range of gelatinization temperature 

(5.7 to 6.5°C for several cultivars). Enthalpy change of gelatinization of squash starches is 

high ranging from 14.2 to 17.8 J/g. Retrograded squash starches, for 7 days at 4°C, had low 

onset of thermal transition temperature (typically < 38°C) and high enthalpy change of 

thermal transition, ranging from 6.5 to 9.8 J/g, and rétrogradation percentage ranged from 44 

to 60%. 

Squash starches had high peak viscosity, ranging from 174 to 233 RVU, high final 

viscosity (163 to 268 RVU) and high setback (60 to 108 RVU), for starch from fruit at 

harvest. Breakdown was moderate to high (36 to 89 RVU) and pasting temperature ranged 

from 65.6 to 73.8°C for starch from fruit at harvest. Pasting properties were not greatly 

affected by storage time for most squash cultivars. Squash starches exhibit firm and sticky 

gel properties. In general, gel firmness increased, while gel stickiness decreased for 

increasing storage duration of fruit that starch was extracted from. 

A wide range in hardness of raw squash fruit at harvest was observe with Halloween-

type squash fruit hardness (304 and 312 N) considerably lower than buttercup squash 

hardness (853 to 1083 N). The four buttercups, which had high-starch content, had the four 

hardest fruit and were considerably harder than the close genetic relative, Hyvita (512 N). 

Hardness decreased substantially for high-starch squash cultivars between 5 and 10 minutes 
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steaming, but decreases were much less for low-starch cultivars. There was no change in 

hardness of fruit after storage at all cooking times and fracturability of raw fruit increased 

after 10 weeks storage. High-starch buttercup squash cultivars tended to have lower 

springiness of raw fruit at harvest compared to low-starch squash cultivars. Springiness 

increased during cooking relative to raw, and was higher for low-starch cultivars, especially 

Halloween-type squash. Springiness was not greatly influenced by storage time. 

Correlations among squash fruit texture and starch structural or functional properties 

depended on fruit storage time and cooking time. Starch content was positively correlated to 

hardness and fracturability, and negatively correlated to springiness. Apparent amylose 

content correlated negatively to hardness and fracturability of squash fruit, but absolute 

amylose content correlated positively to hardness and fracturability, suggesting long branch 

chains of amylopectin play a role in texture of squash fruit. Furthermore, hardness and 

fracturability of squash fruit was consistently correlated to short (DP < 12) and long (DP > 

37) amylopectin branch chain-lengths and negatively correlated to intermediate amylopectin 

branch chain-lengths (DP 13-36), regardless of storage time. Amylopectin molecular weight 

and polydispersity correlated positively to hardness of squash fruit, whereas gelatinization 

temperatures were negatively correlated to hardness. Paste viscosity was negatively 

correlated to hardness and fracturability of squash fruit, while breakdown was positively 

correlated to springiness. 

Many correlations among squash structural and functional properties were also 

observed. Apparent amylose was correlated positively to peak viscosity, final viscosity and 

setback, whereas absolute amylose was positively correlated to peak viscosity and 

breakdown, at harvest, but negatively correlated to breakdown and positively correlated to 
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final viscosity for starch extracted from fruit after 10 weeks storage. Higher molecular 

weight amylopectin with lower polydispersity resulted in lower gelatinization temperatures. 

High enthalpy change of gelatinization was observed for squash starches with low 

polydispersity. Squash starches with high enthalpy change of gelatinization had higher peak 

viscosity. Apparent amylose was positively correlated to gel firmness and negatively 

correlated to gel stickiness. Wider amylopectin molecules, determined by gyration radius, 

produce stickier, less firm gels. Starch pastes with low breakdown produced firmer gels. 

Amylopectins with shorter average branch chain-lengths, particularly less DP >37, produced 

stickier gels. Squash with high enthalpy of thermal transition of retrograded starch, and paste 

with high breakdown and low final viscosity result in softer gels. Amylopectin 

polydispersity was negatively correlated to pasting properties of final viscosity and setback, 

as well as gel firmness. Average amylopectin branch chain-length was correlated positively 

to peak viscosity and negatively to pasting temperature. Proportion of long amylopectin 

branch chain-lengths (DP >37) was positively correlated to peak viscosity. 

Low-frequency ultrasound (100 KHz) was transmitted through raw and cooked 

squash fruit flesh that was stored 7.5 weeks, as a nondestructive method of measuring squash 

fruit texture. Ultrasonic velocity (UV) transmitted through raw squash fruit was comparable 

or slower than through air, ranging from 190 to 362 m s"1. UV increased after 10 min 

steaming with the five high-starch squash cultivars having the fastest UV. Despite squash 

fruit becoming at least 20 times softer after 20 min steaming, UV increased rapidly, ranging 

from 1,950 to 2,800 m s"1. Light micrographs show the five high-starch cultivars steamed 10 

min have cells engorged 50 to 100% with gelatinized starch, which the seven low-starch 

cultivars lack, suggesting swollen gelatinized starch mass contributes to higher UV. Fruit 
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cell wall rupturing depended on cultivar and cooking time. Light micrographs indicate starch 

and cell walls contribute to squash fruit texture, but an additional factor, possibly turgor 

pressure, contributes to texture. UV seemed related to behavior of starch within cells and 

cell wall structure. 

Winter squash fruit starches exhibited seasonal variation. Starches extracted from 

fruit grown 2, 3 or 4 years had variation in the starch structural properties of starch content, 

amylose content, average amylopectin molecular weight, amylopectin polydispersity, 

amylopectin gyration radius and amylopectin branch chain-length distribution. Starch 

functional properties of gelatinization temperatures, enthalpy change of gelatinization, 

thermal transition temperatures and enthalpy change of thermal transition of retrograded 

starch, starch paste peak viscosity, breakdown, final viscosity, setback and pasting 

temperature all varied among the four seasons. Only variation in starch content, amylose 

content, amylopectin molecular weight and amylopectin branch chain-length distribution 

showed consistent trends for all cultivars between seasons and this variation could be 

attributed to rainfall over entire season, and average daily temperatures and solar radiation 

during squash fruit development. 

Variation in textural attributes of winter squash fruit across 2-3 seasons (years) was 

investigated. Hardness, fracturability and springiness showed high seasonal variation for 

fruit steamed at various times between 0 and 20 min. Greatest variation between seasons in 

fruit hardness and fracturability was observed for fruit steamed 10 min. Springiness 

exhibited greater seasonal variation when fruit was raw or at short duration steaming times. 

Rainfall over entire season or average daily maximum temperature and solar radiation during 

fruit development may be contributing to variation in textural attributes observed. Results 
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suggest that future studies on the texture of winter squash should consider textural 

measurements over more than one season to account for seasonal variation. 

During cultivation of winter squash, surprising observations were made for the 

cultivar Zapallo Macre which originates from the Peruvian/Bolivian border. Zapallo Macre 

fruit vary drastically in fruit size, shape and color. Zapallo Macre fruit also had large 

differences in starch content with fruit accumulating greater than 60% of their dry matter as 

starch harvested from the same plants that produced other squash fruit that lacked any starch. 

Zapallo Macre fruit variation could be divided up into about eight phenotypes, in which 

starch properties and textural attributes of five phenotypes were studied. The five 

phenotypes varied in starch content, amylose content, amylopectin molecular size, 

amylopectin branch chain-length distribution, gelatinization temperatures, enthalpy change of 

gelatinization, thermal transition temperatures of retrograded starch, all starch pasting 

parameters, gel firmness and gel stickiness. The five phenotypes also varied in hardness, 

fracturability and springiness of raw and cooked fruit. Possible commercial utilization of 

starches from Zapallo Macre could be limited due to its variation. However, the large 

variation in starch accumulation of Zapallo Macre fruit could make a potential model system 

for studying the mechanism and regulation of starch biosynthesis in storage organs. 

Structural and functional properties of six apple cultivar starches were also 

characterized. Starch comprised 44 to 53% of the dry matter of immature apple fruit. Apple 

starch granules varied in diameter from 2 to 12 jam and granules were compound. Apple 

starches exhibited C-type X-ray diffraction patterns, but A-type crystalline packing was 

predominant. Apple starch had high apparent amylose content (40 to 48%), but iodine 

affinity of amylopectin fraction was also high, resulting in absolute amylose content of 26 to 
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29%. Weight-average amylopectin molecular weight was large (4.6 to 11.1 xlO8 g/mol). 

Proportion of long amylopectin branch chains (DP >37) was higher than any other starch 

and ranged from 29.7 to 32.4. Onset gelatinization temperature ranged from 64 to 66°C and 

enthalpy change of gelatinization was high (16-18 J/g). A distinctive characteristic of apple 

starches was three cultivars had extremely low breakdown (< 4 RVU) and very high setback 

(> 100 RVU). Peak and final viscosities ranged from 99 to 148 RVU and 144 to 224 RVU, 

respectively, and pasting temperature was about 70°C. Apple starches produced both firm 

and sticky gels. 
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APPENDIX A - SQUASH FRUIT AND OTHER PICTURES OF CULTIVATION. 

Big Max (above) and Cha Cha (below). 
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Delica (above) and Hyvita (below). 
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Kurijiman (above) and Lakota (below). 



www.manaraa.com

486 



www.manaraa.com

487 

H 
• !:â 

Sweet Mama (above) and Warren Scarlet (below). 
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Whangaparoa Crown (above) and Yogorou (below). 
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Zapallo Macre (above) and interior of buttercup squash (below). 
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Some cultivars showed incredible diversity. Shown here is the diversity for Lakota 
(above) and Zapallo Macre (below). 
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Above: Squash seeds were germinated in greenhouse and seedlings transplanted. 
Below: Field site in August, 2000. 
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Above: Squash fruit stored at 12°C. 
Below: Squash fruit sliced longitudinally for starch extraction. 
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Above: Deseeding of fruit for starch extraction. 
Below: Removal of skins for starch extraction. 
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Above: Squash fruit cut into cubes so it could fit into meat grinder. 
Below: Squash fruit ground in meat grinder prior to blender because of its hardness. 
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Whangaparoa Crown and Delica sold as whole fruit (above) and as segments (below) at a 
store in New Zealand. Photos courtesy of Jina's Fruit and Vegetable Market, Upper Hutt, 

New Zealand. 
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APPENDIX B - INSTRON UNIVERSAL TESTING MACHINE MEASUREMENTS OF TEXTURE 
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For squash texture profile analysis, samples of raw and steamed longitudinal fruit slices had a cored fruit cylinder removed from 
equatorial region and trimmed to have a height of 12 mm and diameter of 20 mm, similar to this above diagram obtained from 
Ratnayake (2001) Physical properties of squash (Cucurbita maxima) cell walls. Ph.D. thesis, Auckland University, Auckland, New 
Zealand, pp. 54. 
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Above: Squash fruit steamed 
Below: Fruit cylinders used for Instron Universal Testing Machine textural profile 

analysis. 
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APPENDIX C - APPLE CULTIVARS SELECTED FOR STARCH STUDY 

One apple replicate selected for Granny Smith (above) and Gala (below) 
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One apple replicate selected for Royal Gala (above) and Jerseymac (below) 
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One apple replicate selected for Jonagold (above) and Golden Delicious (below) 
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Above picture highlights the importance of not using a meat grinder initially to grind 
apple fruit prior to blending apple fruit in sodium metabisulfite. The three samples are 
Granny Smith apple extracts. The extract on left had apple fruit ground in meat grinder 
and then immediately blended in sodium metabisulfite. The center and right extract both 
had apple fruit sliced and immediately blended in sodium metabisulfite. All three 
replicates had almost identical apple fruit weight that was extracted. The meat grinder 
resulted in less sodium metabisulfite needed to ground fruit but as can be seen from the 
starch depositing at bottom of each container, apples ground in meat grinder first resulted 
in a considerable loss of starch suggesting that apples have very active amylases, and 
therefore studies involving apple starch must extract fruit by immediately placing sliced 
fruit in sodium metabisulfite. 
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- WHY ARE JACK-O-LANTERN PUMPKINS USED FOR 

HALLOWEEN CARVING? 

* •  & 
The Halloween pumpkins of 
Prizewinner and Big Max 
accumulated very little starch 
and Rouge Vif D'Etampes 
degraded its starch within 5 
weeks of storage. Therefore I 
propose that Jack-o-Lantern 
type pumpkins are used for 
Halloween because they 
either lack starch or have 
degraded it by October 31, 
and this lack of starch 
decreases their hardness 
making them easy to carve. 

Carvings by David Stevenson 
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